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GENERAL INTRODDUCTION 

X-ray crystallography plays an important role in the research of many scientific 

disciplines including chemistry, physics, biology, geology, and metallurgical/material 

science. Both powder and single crystal diffraction techniques can provide valuable 

information. 

X-ray powder diffraction, although presenting all data in a one-dimensional 

fashion due to the random orientation of the small crystals as compared with the 

three-dimensional nature of the single crystal diffraction pattern, still has wide 

application in the above disciplines. One such application is the grain size determination 

of powder materials. 

X-ray single crystal diffraction structure determination has become a routine 

tool, thanks to the development of the sophisticated computer software packages. In the 

course of pursuing my Ph.D. degree, I have solved a number of single crystal structures. 

Some of these structural results have been or are going to be published (see reference 

[8-13] in the end of Section II). Two of them are worth special mention because the 

investigations involved a combination of X-ray diffraction and molecular mechanics. 

Alignment of a diffractometer to an X-ray generator is crucial in order to obtain 

accurate data for structure determination. But reliance on just the use of invisible X 

rays can be tedious and sometimes even hazardous, especially when a diffractometer is 
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completely out of alignment. 

In this dissertation, X-ray grain size determination of a powder sample, single 

crystal structure dertermination of selected metal complexes and an alignment procedure 

using ordinary optical telescopes to align a diffractometer to an X-ray generator will be 

discussed. 

Explanation of Dissertation Format 

An alternate format is used in this dissertation. The whole dissertation is divided 

into three sections: Section I discusses X-ray grain size determination using a Fourier 

deconvolution method; Section II discusses single crystal structure determination 

combined with molecular mechanics calculation; Section III discusses optical alignment 

of a Hilger-Watts four-cycle diffractometer with a Rigaku rotating anode X-ray 

generator. The first two sections individually contain a separate list of references. Parts 

of Section I and Section II have been submitted for publication and presentation 

respectively. Section III is in the form of instruction for future routine use in our 

X-ray Lab. A General Summary and Acknowledgements are following the sections. 
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SECTION I 

A FOURIER DECONVOLUTION METHOD FOR GRAIN SIZE STUDY 

VIA X-RAY POWDER DIFFRACTION 
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INTRODUCTION 

It is well known that, in metallurgical science, the grain size of the 

polycrystalline metal or alloy and, in material science, the grain size of the powdered 

materials sometimes have pronounced effects on many of their properties. 

When the grain size is in the range of 100pm to 10pm, an optical microscope is 

suitable to measure the dimension of the particles. 

The emergence of the electron microscope, with its much higher magnification 

whereby the image of the object can be seen on a CRT screen or in the form of 

photographs, makes it possible to "directly" measure the size of particles having 

dimensions as small as 100Â by the scanning electron microscope or 2.3Â by the 

transmission electron microscope. 

However, when using such electron microscopes, the samples must undergo a 

series of treatment procedures, which often take days to complete. In addition to this 

disadvantage, only a small area of the sample facing the probe can be examined at any 

one time. This area is usually too small to represent the properties of the whole sample, 

and the individual result can lack statistical significance. 

On the other hand. X-ray powder diffractometry provides a means to give a 

statistical estimate of the particle dimension of a sample of interest (of fine grain size) via 

a measurement of its peak broadening with respect to a standard sample (of coarse grain 
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size > 1,000Â). It is relatively easy and features fast sample preparation. For example, 

data collection for the standard and the sample of interest can be carried out within 

several hours. 

However, the most readily available computer programs which can be used to 

estimate grain size are the Rietveld refinement programs (see below), in which the 

recorded peaks are fit with a certain profile function having refinable parameters. Then 

the grain size can be calculated using the resulting FWHM's (Full - Width - at - Half -

Maximum). However, the exact mathematical relation used is dependent on 

assumptions as to a particular peak shape. 

It was shown'-^^ that the broadened peak of the sample of interest is a convolution 

of a peak width due to the grain size effect and a peak width characteristic of the 

instrument itself, i.e., the peak given by the standard sample. According to Klug & 

Alexander^^^, the Fourier method is the "most powerful technique" for the 

deconvolution in order to obtain the pure grain size peak width from the recorded 

X-ray diffraction peaks. 

In this section, a computer program is described which converts this theory into 

practice. Results of grain size thus determined are compared with those obtained from 

the Rietveld refinement program and with those determined using TEM techniques. In 

all of these studies, a powdered magnet material NdjFej^B was used. 
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SAMPLE DESCRIPTION 

The rare earth-iron permanent magnets, of nominal combination Nd^Fe^^B, 

have the highest magnetic properties yet discovered. The theoretical maximum energy 

product for this magnet is about 64MGOe, while experimental energy 

products have reached as high as 40MGOe. The high coercivity of Nd2Fe^^B is due to 

the small grain size, which impedes the movement of magnetic domain walls. Recently 

Anderson^^^ used high pressure gas atomization to produce the isotropic NdjFej^B 

magnet. 

The NdjFcj^B samples^'*^ were prepared stoichiometrically from 32.5wt% Nd, 

66.2wt%Fe and 1.32wt%B, (of purity 99.99wt%, 99.9wt% and 99.2wt%, 

respectively). The mixture was arc melted several times to ensure that the resulting ingot 

had a homogeneous composition, then the ingot was melt-spinned with a 44 m/s copper 

wheel speed in an Ar atmosphere to form ribbons, some of which were used for 

subsequent grain size investigation. One part of the ribbon was annealed at 900 ± 10°C 

for one week to let the grains grow bigger to form the coarse, "standard" sample. 
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TRANSMISSION ELECTRON MICROSCOPE (TEM) 
INVESTIGATION OF THE GRAIN SIZE 

A powder of the fine grain size sample from the ribbon was mixed with copper 

and silver powder. The mixture was pelleted into a 3mm disc, then thinned with a 

Minimet grinding machine. The thin disc was ion milled with a cold stage. 

A microstructure investigation of the sample so prepared was performed on a 

Philip's CM30 STEM electron microscope. The grain shape and grain size thus 

revealed are shown in Fig. 1.1-1.3. It can be seen that the grain size for the region of 

the sample surveyed is in the range of ca. 350Â. 

Determination of grain size via analysis of peak broadening of the X-ray 

diffraction patterns was next carried out. 
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Fig. LI A transmission electron microscope photos of ribbon sample 
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Fig. 1.2 A transmission electron microscope photos of ribbon sample 
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Fig. 1.3 A transmission electron microscope photos of ribbon sample 
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BROADENING OF DIFFRACTION PEAKS 
DUE TO THE GRAIN SIZE EFFECT 

Grain size can be determined according to Scherrer's fbrmula^^^: 

t= (1) 
g*C0S8 

where t is the mean dimension of the grain, X the X-ray wave length, 6 the peak 

position in the pattern, K a constant usually of a value ca. 0.9, and B is the pure 

X-ray diffraction broadening, i.e., the broadening of FWHM of the peak in question 

with respect to the corresponding FWHM of the "standard" peak. 

Bragg^^ has given a simplified derivation of the Scherrer equation which can be 

represented as follows: 

Referring to Fig. 1.4, consider diffraction of X rays of wavelength X by 

a crystal grain in the form of a platelet. Suppose that the platelet consists of p atomic 

(hkl) planes having the spacing d with respect to each other and being parallel to the 

surface of the platelet. If p is large enough, the thickness of the platelet 

{p - \ )d » pd. 

Let - pd. The relationship between and the intensity at the FWHM 

of the reflection (hkl) is to be found. 

From Bragg's equation, if the path difference A1 between the rays reflected 
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1.4. Diffraction of X-rays of wavelength X 
by a crystal grain in the form of a platelet. 
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from successive planes is equal to the multiple of the wavelength À, the amplitude of the 

diffracted beam will be a maximum: 

«A =A/  
(2)  

= 2</sin0 

When the glancing angle differs from 6 By a small amount e, the path 

difference may be written: 

A/ = 2disin(0+e) 

= 2d(sin8cose+cos6sine) (^) 

= nXcose+sine 2</cos6 

with e in radians; since e is expected to be small, sine e and cose « 1, and 

(3) can be written as 

Al = nk +2e</cos6 

The corresponding phase difference is 

—A/  =  2 / i7 t+—e£fcos0  
X X 

(4) 
_ 47i:e<fcos6 

X 

By well-known principles of optics'-^, if n equal vectors of amplitude a differ in 

phase by successive uniform increments, the resultant amplitude is 
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A = a n ^  ( 5 )  
a 

a being one half of the phase difference between the first and last vectors of the series. 

Therefore, the phase difference between the first and the planes in Fig. 1.4 is 

4» = 4n/>yose (5') 

and by equating a and 0/2 according to (5), the resultant amplitude of the reflected 

wave is 

A ^  — (6)  
Inpedcosd 

X 

The amplitude of the reflected ray is a maximum when e = 0 and the reflected rays 

from all p planes are in phase. Utilizing the knowledge that in (6) when 0 becomes 

zero, one has: 

lim sin4> . 
•-oir = ' 

therefore 

i4j, = ap (7) 

Knowing that the maximum intensity = AQ^ , at half-maximum intensity, 

according to (5) 
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^0 (fj 
Bragg used a graphical scheme to find the solution of 4> in equation (8), 

by plotting the left hand side of (8) against 0/2, and he found that 

t = 1.40 
2 

With Ejj being the angular deviation from the Bragg angle 6 of the incident or 

the reflected rays, (5') now has the value 

COS0  ̂

Thus, the full angular width at half-maximum intensity of the reflection 

ĥU ~ 4% 

.  4,  I 'M!  
l-npd cosQ 

and Scherrer's equation (1) is obtained with 

„ 4 * 1.40 

= 0.892 

The author of this dissertation employed Newton - Raphson iteration 
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m V, = (9) 

for the root x of equation f{x) = 0, to find the solution of 4> of equation (8): 

. 
( f j  ^ 

Letting x = ^/2, the equation becomes 

sin^j; _ ^ 
*2 " 2 

whereas in (9), correspondingly 

fix) = 2sin^je -

and 

fix) = 2sm2x-2x 

The iteration formula (9) becomes 

(8') 

X,., . X, - (9-) 
2sin2*-2* 

Knowing that when jr = 1 
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sin^jc 
*2 

= 0.70807 

when X 

= 0.20671 

X should have the value 1 < x < 1. 

Starting with x^= 1, several iterations on (9') produced the converged value 

o{ X = 1.391 with < 10"^. This gives K = 0.886 for Scherrer's 

equation. 
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DETERMINATION OF B IN SCHERRER'S EQUATION 

From the above derivation, K is known to have the value of 0.886, and B is 

defined as the Full-Width-at-Half-Maximum (FWHM) of the peak whose profile is 

purely due to the effects of small grain size. 

In order to obtain i?. X-ray diffraction data collection should be carried out on 

two samples of the material. The first sample is that of interest, i.e., of grain size less 

than 1,000Â, and will yield a diffraction pattern whose peak profile will be denoted as 

A(v). The second sample is the "standard sample" of grain size > 1,OOOÂ, giving a 

profile ^(v). If the peak b (v) at the position of the first pattern has a FWHM 

of and the corresponding peak ^(v) of the second pattern gives B^, ^ can be 

calculated as 

according to Scherrer^^^, if the peak has Lorentzian shape: 

/ (V)  = -

1 + 
BÎ 

where is a constant, ^ is the FWHM of a peak at position Alternatively, B 

can be calculated as 
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according to Warren^®^'^®^, if the peak has Gaussian shape: 

/(v) = exp -C, 
(v-v,)^ 

Bt 

where is a constant, ^ is the FWHM of a peak at position v^. 

However, the peaks produced by a particular instrument are usually between 

Lorentzian and Gaussian in nature, and the FWHM of the profiles in the recorded raw 

X-ray diffraction patterns are also sometimes hard to determine due to the existing 

background intensity and the noise associated with it, due to peak overlap, etc. 

Rietveld Refinement for the Determination of B, and J? 
n g 

Rietveld refinement is one of the most popular techniques nowadays in X-ray 

powder diffraction analysis. It provides a scheme to determine the FWHM of the peak 

in the pattern via optimally fitting the recorded pattern with a peak which is theoretically 

generated by a certain type of function (e.g., Gaussian, Lorentzian, Pseudo Voigt or 

Pearson VII, etc.) and generated according to the given compositional and structural 

information (i.e., chemical species, cell parameters, space group and atomic positions, 
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etc.). In practice, it calculates the theoretical intensity at the y ^ data point as 

K, = E4 Eh #(28,-28^ P, + BKj 
P k 

where is a scale factor for the phase; contains correction factors such as 

Lorentz, polarization, multiplicity and absorption factors; is the reflection profile 

function; 7^ is the structure factor for the reflection; is the preferred 

orientation function; and is the background intensity at y ̂  data point. The 

summations are over all the phases and reflections. 

The calculated intensity Y^. undergoes least squares refinement with respect to 

all the parameters to best fit the observed intensity Y^j when the normal equation 

Ad = g 

is solved for the parameter shifts d\ where A and g are the matrices with elements 

and 

Then the FWHM of the theoretically generated peak above the theoretically 

generated background is taken as the FWHM of the recorded peak. Hence iS^ and 

can be determined by running the respective Rietveld refinements. 
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However, two problems remain: 

a) The recorded peak may not necessarily be fit very well by the reflection 

profile function chosen during the Reitveld refinement. In practice, a refinement 

residual always exists, having a value of 4 - 5% at its best; and such a refinement may 

not be very sensitive to types of peak function assumed. 

b) The formula - B  ̂for the B used in Scherrer's equation is 

true only when the corresponding peaks are of Gaussian nature, and B = Bj^ - is 

true only when the corresponding peaks are of Lorentzian nature. For other peak 

function types, no clear relation exists. 

Rietveld Refinement of the Standard and the Ribbon Samples 

X-ray diffraction data of the "standard" sample and the ribbon sample were 

obtained using a Philips 1729 X-ray diffractometer at a power level of 20 mA x 40 kV, 

using Cu Ka radiation with scanning step size of 0.02°, 20 seconds per scan step 

interval, and over a 20 range of 20° -80°. 

The Rietveld program DBW3 . 2S^'®^ was used to perform the refinements. 

Whole pattern refinements were used. Fig. 1.5 and Fig. 1.6 show the recorded pattern 

(red dots), the theoretically generated profile (green solid line), the difference between 
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them (yellow), and the peak positions of the generated profile (purple), for the 

standard and the ribbon, respectively. The residual factors for the standard sample were 

Rp = 5.26% and = 7.18%, those for the ribbon sample were R^ = 3.85% and 

R^ = 5.15%. where the pattern R-factor is defined as 

., E F, - n, 
p 

E I"-/! 

and the weighted pattern R-factor as 

£«•.(1-, - n,)' 

The program DBW3. 2S was originally written for IBM computers, and after 

it was transplanted onto our VAX system, only the Pearson VII profile function was 

implemented for the generation of the theoretical patterns, as this function appeared to 

provide the best fit. This function is different from either a Gaussian or a Lorentzian 

function. 
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Fig. 1.5 Plotting of Rietveld Refinement Result on the Standard Sample. 

Red dots represent experimental data, green line represents the calculated pattern, 

yellow line represents the difference between the experimental data and the calculated, blue 

line is the zero point of the background, the small purple ticks right above the 20 abscissa 

are the calculated Ka^ and K«2 peak positions. 
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Fig. 1.6 Plotting of Rietveld Refinement Result on the Ribbon Sample. 

Red dots represent experimental data, green line represents the calculated pattern, 

yellow line represents the difference between the experimental data and the calculated, blue 

line is the zero point of the background, the small purple ticks right above the 20 at^cissa 

are the calculated K«j and K«2 peak positions. 



www.manaraa.com

o 

'2fO 25 30 ils 4b 4̂  db 60 efe 7b Vs so 



www.manaraa.com

30 

Since the samples were stress free, and some authors'^' claim that the peak shape 

due to a pure grain size effect should be of Gaussian nature, the formula 

2 2 2 B = - B  ̂ was used to calculate J?, which was then used to calculate the grain 

size of the ribbon using Scherrer's formula. 

Peaks having their peak heights above the backgrounds by greater than ~ 1 xlO^ 

count in the ribbon pattern and ~ 2 x 10^ count in the standard pattern were chosen to 

obtain the FWHM's of them, namely the B^s and the B^s respectively, for the 

calculation of "the pure peak broadening", the B's. The results of the grain size 

calculation are listed in Table I.l 

It was found that the grain sizes thus calculated had a tendency to decrease while 

the peak position angles increased. This was most probably due to the peak shapes of 

the patterns in question being different form those of Gaussian peaks. Because of this 

result, we decided to try a different approach, an approach that employs a Fourier 

deconvolution technique, for grain size analysis. 
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Table 1.1 Grain Size Determination for NdjFej^B Ribbon 

by Rietveld Refinement 

Two theta Peak Broadening Grain Size 
(degree) (degree) (Angstrom) 

26.92 0.206 390.8 
32.25 0.215 379.5 
32.96 0.216 378.1 
35.78 0.220 373.1 
37.25 0.223 370.7 
38.23 0.224 369.2 
39.17 0.226 367.8 
39.63 0.226 367.1 
41.40 0.229 364.6 
42.28 0.230 363.4 
42.95 0.232 362.6 
43.57 0.233 361.8 
43.99 0.233 361.3 
44.22 0.234 361.0 
44.51 0.234 360.7 
47.65 0.239 367.2 
48.07 0.240 356.8 
56.92 0.254 349.8 
57.96 0.256 349.2 
61.41 0.262 347.6 
62.84 0.264 347.1 
65.27 0.268 346.3 
66.23 0.270 346.1 
67.49 0.272 345.9 
78.37 0.291 346.7 
79.57 0.293 347.1 
79.71 0.293 347.1 

average 359.9 
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USE OF FOURIER DECONVOLUTION FOR THE DETERMINATION 
OF THE PURE DIFFRACTION BREADTH 

According to the superposition theorem as presented by R. C. Spencer^'^^''^'^^ 

the profile of the observed peak, b (v), is the convolution of the pure diffraction profile, 

/(v), and the weight function of the apparatus, ^(v) : 

A(v) = /_7«(C)/(v - C)rf( 00) 

In the present case, we can say that A (v) is the profile of the peaks of the sample of 

interest, i.e., the sample of fine grain size; ^(v) is the profile of the peaks of the 

"standard sample", i.e., the sample of grain size > 1,000Â; and /(v) is the profile of 

the peak which is responsible for the peak broadening due to the small grain size effect. 

Thus A(v) is the "fold" of ^(v) and /(v), and (10) can be written with equal validity 

as 

A(v) = /_'7(C)«(v - (11) 

By using the Fourier transform method, the desired function /(v) can be 

deconvoluted from the measurable functions A(v) and 

Let the functions be expanded into Fourier integrals: 
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/(V) = -L 
V^"'-

f(v) = -L r'acoe-^^^'^dc (12) 

A(v) = -L rHiOe-^^'^^dC 

where the Fourier coefficient F is the Fourier transform of /, G o( g, and 

H 0Î b respectively, and have the forms 

F(0 = -L 

G(() = -L:/"g(v)tf2'"vCjv (13) 

/r(C) = — f"A(v)c2"'^frfv 

The relevant theorem in Fourier transform shows that 

^(O = G ( 0 F ( 0  

and therefore 

F ( 0  = (14) 

The first equation of equation set (12) can now be written as 

/(V) = (15) 
G(C) 

which is the profile of the desired "pure" peak exhibiting the peak broadening due to the 

small grain size effect. 
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In the present work, a fast Fourier transform (FFT) technique'-'^ has been 

employed in a deconvolution computer program for grain size determination. The 

profiles recorded experimentally are discrete data points. Thus, in practice the 

integrations for both forward and backward Fourier transform are changed to 

summations; the integral elements dv and dC to A v and AC, with A being the step 

size of the recorded pattern; and the integral limits ± <» to finite numbers ± JV is 

required by the FFT technique to be a power of 2, i.e., 2™, and ideally 

2"-l < < 2™, where is the number of data points involved in the Fourier 

transform. Equations (13) and (15) become 

F(0 = AV 
^j2n -N 

G(0 = -LEg(v) f i2Af^ '  Av 06)  
^/2TI -N 

+Ar 2nivC 

^(O = Av 
)/2n -N 

and 

However, a first attempt to simply employ the above formula in computerizing 

the problem resulted in an /(v) that looked like that shown in Fig. 1.7, no matter 

whether A(v) and ^(v) were the whole patterns on Fig. 1.5 and Fig, 1.6, or 

isolated peaks, say those on ~ 27°, from these patterns. Problems were even found 
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using a "very well behaved" Gaussian profiles (Fig. 1.8 and Fig. 1.9) generated by my 

own program. 

The reason for the failure appears to be due to the noise and/or the discontinuities 

that have been introduced into the recorded or the theoretically generated patterns. 

For example, in the "ideal" Gaussian cases, A(v) and ^(v) vanish only at + <» or 

-oo. The A(v) and ^(v) profiles used in practice are truncated within a finite range. 

In carrying out the forward Fourier transformation to obtain the coefficients H(X) and 

<?(() according to (16), the non-zero background wings of the profiles A(v) and 

^(v) accumulate during the summation, making the background wings of H(X) and 

(?(() non-zero, although very small in value (Fig. 1.10-1.11). When the 

deconvolution and the backward Fourier transformation proceed, according to (17), 

the small values in the background wings of ^"(0 and Cr(0 exaggerate the noise. 

That can be especially true when (?(() is very small, since it is in the denominator. 

To alleviate this problem one can — 

a) lessen the noise pertaining to the recorded b(y) and ^(v) patterns. 

A least squares smoothing technique based on a seven-point-polynomial could be used to 

smooth the raw data, but since it takes the weighted average of the adjacent data values 

for an individual data point, it depresses and broadens the peaks; it is just the latter that 

is a main concern of this work. Instead, a least squares spline smoothing technique^ 

was selected. 
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Figure 1.7 A noisy pattern of the f(y) profile obtained in the deconvolution of ^(v) 

from the A(v) profile. 
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Figure 1.8 A generated Gaussian A(v) profile. 
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Figure 1.9 A generated Gaussian ^(v) profile. 
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b) modify the results of the forward transform, and 0(C) profiles, 

to minimize the accumulated noise on their background wings. 
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Figure 1.10 A Fourier transformed Gaussian | j ^ profile. 
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Figure 1.10 (Continued) The Gaussian character of the profile is eaâer to see, after 

choosing a smaller range on the abscissa. 
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Figure 1.10(Continued) The noise associated with the profile when a smaller range is 

chosen for the ordinate. 
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Figure 1.11 A Fourier transformed Gaussian I(r(01 profile. 
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Figure 1.11 (Continued) The Gaussian character of the | G(0profile is easier to see, after 

choosing a smaller range on the abscissa. 
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Figure 1.11 (Continued) The noise associated with the | (7(() profile when a smaller ran  ̂ is 

chosen for the ordinate. 
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Least Squares Spline Smoothing of the Recorded Patterns 

In industry, in order to enlarge the designs of high speed airplanes or ship bodies 

with high precision, splines have been used to obtain smoothed curves. Splines are 

pieces of elastic, steel or soft wooden stripes that were put among the nails, which were 

located on the desired positions of the object material, such that the nails prevent the 

stripes stretching away from the nails; and the connections between two adjacent splines 

were realized by letting the splines share a common nail, and by the end segment 

adjacent to this common nail of the spline pressing the starting segment of the other 

spline against the nail (Fig. 1.12). This would guarantee that the smoothness obtained 

is valid up to a continuous second derivative. 

In the spline approximation, the function consisting of the data points is 

approximated by a set of polynomials, where each polynomial is determined by two 

consecutive data points which were chosen and designated as knots, and when two 

polynomials join at a common knot, not only are their functional values at this point 

equal, but also their first derivatives and the second derivatives at this point are 

respectively equal as well, in order that all the polynomials join smoothly. 
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/(x) 

X i  X t  

1.12 Spline approximation of f ( x ) .  

Spline materials (thick curve) are positioned among the nails (solid 

circles), which are designated as knots. Cubic spline approximation is to 

determine in [Xj, ] a polynomial P. (x) to the power of 3, based 

on the values Xy_j , x., x.^j , f^x. j), f(^x.), and fix.^j). 
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Referring to Fig. 1.12, for knots with data values f(.Xj), 

/(jr^) A-*!,)» there are n - J  corresponding polynomials ( x ) ,  7^ ( j r ) , . . . ,  

( x )  to be determined with the following conditions: 

a) at each pair of knots, Xy and Xj^j, the values of the corresponding 

polynomials Pj(xj) and equal the data values /(xy), and 

Pi(x , )  =f (x)  
i  = 1, 2, n-1 

b) at each knot, the values of the first and second derivatives of the 

polynomials sharing the same knot must be equal respectively 

p I ( x , )  = PU (x,-) 
i  = 2 ,  3 ,  M-l  

c) at both end knots, the splines are 'free'. Their curvatures are zero 

= 0 

fwK) = 0 

According to the properties of the spline materials, each Pfix) is a linear function of 

X. If one denotes 
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fi = /(*,) 

A, = - X ,  

one can obtain the equation for P f ( x )  in the interval [ x . ,  x . ^ j \  using the values 4>j 

and 

therefore P .  ( x )  can be obtained by simply integrating P / ' ( x )  twice. 

+ 

i, 6 

^ 6 
(*i+i ~ *) ( = 2,3...,n-l 

where each 4>i can be obtained by differentiation of P .  { x )  above and using the 

c o n d i t i o n  P / ( , x . )  - P j . / i x . )  
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i = 2, 3, n-l 

while "end conditions" still hold, yielding = 0 

Cubic least squares spline smoothing'-'is based on the above general spline 

approximation. First, the approximate data values for data points 

were determined by the polynomial f (ay)'s 

then if an estimate of the variance in f^x.) is given, one can recover P i x )  

from these data by constructing a function ^((), which minimizes 

overall g  { I )  together with the three derivatives, where f is within [0,1] and can be 

chosen according to the desire of the user regarding the closeness of the fit of the function 

to the given data and how smooth the function is to be. 

Fig. 1,13-1.17 show the raw peaks, picked out from different portion of the 

h(y) and g(y) patterns, and their least squares spline smoothing results. 

/(*,) = + e, 
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Figure 1.13 A(v) and ^(v) patterns at ~27° of the samples, and their least square spline smoothed 

results. The patterns have not been corrected for zero points. 
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Figure 1.14 Mxiltiple peak A(v) and ^(v) patterns at 35° -40° range, and their least squares spline 

smoothed results. The patterns have not been corrected for zero points. 
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Figure 1.15 Multiple peak A(v) and ^(v) patterns at 41* -45° range, and their least squares spline 

smoothed results. The patterns have not been corrected for zero points. 
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Figure 1.16 Multiple peak A(v) and ^(v) patterns at 55° -60° range, and their least squares spline 

smoothed results. The patterns have not been corrected for zero points. 
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Figure 1.17 A(v) and ^(v) patterns at ~62° of the samples, and their least squares spline 

smoothed results. The patterns have not been corrected for zero points. 

2500 

h (raw) 
h (SpUne—smoothed) 
g (raw) 
g (Spline—smoothed) 

2000-

^ 1500-

500-

62.0 62.2 62.4 62.6 62.8 63.0 63.2 63.4 

2 0 C) 



www.manaraa.com

56 

It should be mentioned that although least squares spline smoothing maintains 

the main features of the raw data profiles, choosing the individual data points as the 

knots to obtain a good smooth result is challenging and tedious work. I do wish I had a 

graphical editor to choose from raw data points shown on the screen via a mouse-like 

operation, to have all the points so chosen read as the knots into the least squares spline 

smoothing program, and have the result shown on the screen for inspection. This 

process could then be repeated until the best result has been found. 

Elimination of Accumulated Discontinuities of the Resulted Profiles 
after the Forward Transform 

By close investigation of the failed backward Fourier transform of the 

deconvoluted F{Ç) of the "well behaved" Gaussian function, which resulted in an 

above mentioned "noise-like" pattern of /(v), it was found that accumulated 

discontinuities played an important role. 

This is seen in Fig. 1.18a-1.18c where the Gaussian | f (() | ̂ is plotted. 

Since F(X) as calculated by (14) is a complex function, the modulus is more readily 

plotted and examined: 
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where, using 

57 

H ( 0  = + i H ^ i O  

G ( 0  =  G / O  +  i G , ( 0  

and thus, according to (14) 

+ Gf  

such that the real and the imaginary components of F(Q are 

H^G, + H,G^ F. = 
G^ + Gf 

and 

„ 1,0 , -H,G,  

In Fig. 1,18a, I-FCC) I ^ should maintain the Gaussian feature. However, the 

discontinuities accumulated on the wings of and 0(0 make the noise on the 

wings of F(0 so high that the main peak, which is located between ca. - 35 and 

+ 35 reciprocal space units, has low intensity compared to the two noise peaks at -170 

and +170, and thus almost can not be seen. 
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Figure 1.18 A Gaussian | i'"(01 ̂  profile obtained according to equation (14). The noise associated 

with the Gaussian and C7(0 profile make the main peak almost invisible. 
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Figure 1.18 (Continued) The main peak of the (Q profile shows up after choosing a smaller range on 

the ordinate. 
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Figure 1.18 (Continued) The Gaussian character of the (Q P profile is easier to see, after choosing a 

smaller range on the abscissa. 
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After choosing a smaller range on the abscissa and change the scale of the 

ordinate, the Gaussian feature of | jF(C) | ̂ can be revealed (Fig. 1.18c) and since the 

main peak of | f (() | ̂ is free of noise, it guarantees that the backward Fourier 

transform, after truncating the wings of the F(C) profile beyond - 35 and + 35 

reciprocal space units, will be successful. 

In practice, it is not appropriate to modify the | /^(() | ̂ file before the 

backward Fourier transformation, due to the fact that the recorded A(v) and ^(v), as 

well as the resultant /(v) profiles, are not necessarily symmetrical peaks, in contrast to 

a true Gaussian peak or a Lorentzian peak; hence the imaginary parts of the transform 

are non-zero. If the | f (() | ̂ file were truncated, and the f (() file were recovered 

by simply taking the square root of the | | ̂ file for the backward Fourier 

transform, the "phase" of the originally complex file F(li) would be lost, and features 

of the resulting /(v) file would be distorted. 

In the present work, the elimination of the accumulated discontinuities was done 

immediately after the forward Fourier transform on both H(0 and (?(() profiles by 

recognizing the starting points of the background on the corresponding 111(01 ̂  and 

I <7(01^ Hies, then nullifying the ff(0 and 0(0 files beyond their corresponding 

background points. The background points were determined by finding the first region 

having a length, say, one fifth of that of the array, away from the center of the 

\ H (0\^ and \ G (0\^ files, for which the average "intensity" is less than ~ 2% of 
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the "intensity" of the apex. The first points of such a region were taken as the 

background points. 

Fig. 1.19 shows f (y)  which resulted from the deconvolution of Gaussian 

^(v) from A(v). The /(v) profile appears to be Gaussian and this is confirmed by 

noting that the measured FWHM's obey the relationship corresponding to that of 

G a u s s i a n  f u n c t i o n s :  f ^  =  b ^ - g ^ .  

Fig. 1.20 is that for a Lorentzian /(v). It also has the Lorentzian 

characteristics that the measured FWHM's obey the relation of that of Lorentzian 

func t ions :  f  =  b  -  g .  

On comparison of Fig. 1.19 to Fig. 1.20, one finds that the background wings 

of the Lorentzian /(v) are much "noisier" than those of the Gaussian /(v). This is 

reasonable because the Gaussian functions g(y) and A(v) converge more quickly 

than the Lorentzian functions g(y) and b{y) do. Hence when the profiles were 

truncated within the same range, the discontinuities associated with the Gaussian ^(v) 

and b (v) profiles are less serious, and the "starting points" of background of both the 

I I ̂  and | (?(() | ̂ profiles are closer to zero than are those of the Lorentzian 

counterparts. Since the discontinuities not only merge into the background wings but 

also the bodies of the H(^) and (?(() profiles during the forward Fourier transform, 

the body of the Lorentzian /(v) profile is not as smooth as that of the Gaussian /(v) 

either. 



www.manaraa.com

Figure 1.19 A deconvoluted /(v) profile (FWHM 0.8°) obtained after the truncation on the Gaussian 0(v) 

profile and the £f(v) profile, to get rid of the associated noise. The Gaussian profiles A(v) 

(FWHM 1.0°) and ff(v) (FWHM 0.6°) in Fig 1.8 and 1.9 are included for comparison. 
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Figure 1.20 A deconvoluted /(v) profile (FWHM 0.4') obtained after the truncation on the Lorentzian Gr(v) 

profile and the ^(v) profile, to get rid of the associated noise. The Lorentzian profiles A(v) 

(FWHM 1.0°) and ^(v) (FWHM 0.6') are included for comparison. 
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However, even in the Lorentzian case, which had noisier background wings 

than the Gaussian, it still seems valid to measure the peak width at half intensity of the 

apex with respect of the averaged base line of these multiple-peak profiles. 

There is another function termed a Pseudo Voigt function, which is essentially a 

linear combination of a Gaussian function and a Lorentzian function. If one gradually 

mixes a Lorentzian fimction into a Gaussian function such that the resulting Pseudo 

Voigtian ^(v) and A(v) functions changes, the extent of the noisy background wings 

of the deconvoluted Pseudo Voigtian /(v) will increase. This can be readily seen on 

Fig. 1.21 to Fig. 1.29. 

All of this can serve as a reductio adabsunJum supporting the above statement 

that the discontinuities play a key role in the failure of the backward Fourier transform. 



www.manaraa.com

Figure 1.21 Deconvolutioa of the Pseudo Voigt (component; 0.1 Gaussian + 0.9 Lorentzian) ^(v) profile 

from the A(v) profile to obtain an /(v) profile. 
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Figure 1.22 Deconvolution of the Pseudo Voigt (component: 0.2 Gaussian + 0.8 Lorentzian) ^(v) profile 

from the A(v) profile to obtain an /(v) profile. 
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Figure 1.23 Deconvolution of the Pseudo Voigt (component: 0.3 Gaussian + 0.7 Loientzian) ^(v) profile 

from the A(v) profile to obtain an /(v) profile. 
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Figure 1.24 Deconvolution of the Pseudo Voigt (component: 0.4 Gaussian + 0.6 Lorentzian) ^(v) profile 

from the A(v) profile to obtain an /(v) profile. 
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Figure 1.25 Deconvolution of the Pseudo Voigt (component: 0.5 Gaussian + 0.5 Lorentzian) ^(v) profile 

from the A(y) profile to obtain an f(y) profile. 
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Figure 1.26 Deconvolution of the Pseudo Voigt (component: 0.6 Gaussian + 0.4 Lorentzian) ^(v) profile 

from the A(v) profile to obtain an f(y) profile. 
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Figure 1.27 
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Deconvolution of the Pseudo Voigt (component: 0.7 Gaussian + 0.3 Lorentzian) ^(v) profile 

from the A (y) profile to obtain an /(v) profile. 
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Figure 1.28 Deconvolution of the Pseudo Voigt (component: 0.8 Gaussian + 0.2 Lorentzian) ^(v) profile 

firom the i(y) profile to obtain an /(v) profile. 
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Figure 1.29 Deconvolution of the Pseudo Voigt (component 0.9 Gaussian + 0.1 Loientzian) ^(v) profile 

from the A(v) profile to obtain an /(v) profile. 
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RESULTS AND DISCUSSION 

The /(v) profiles resulting from the deconvolution of ^(v) from A(v) for 

Nd^Fe^^B Ribbon, using either isolated peaks at 27' and 63*, or multiple peaks at 

35* -40°, 41* -45* and 55* -60* are shown on Fig. 1.30 - 1.34. It can be seen that 

the /(v) profiles of the single peaks have less noisy background wings than those of the 

multiple peaks. This is understandable because the latter have wider ranges covered, 

thus more noise is merged in the patterns, and the least square spline smoothing for both 

g(y) and b (v) profiles might not have filtered the noise intrinsic in them to the degree 

that was attained in the single g(y) and b(y) profiles. 

In order to confirm whether the /(v) profile thus obtained accurately models the 

pure peak broadening contribution, a Fourier convolution of the /(v) profile into the 

corresponding spline smoothed g(y) profile to form a convoluted b'(y) profile for a 

peak at 27* has been done. The result is shown on Fig. 1.35. In terms of FWHM, 

the convoluted b'(y) profile is in excellent agreement with the spline smoothed b (v) 

profile. The slight difference between them is believed due to the selection of the 

truncating points on both the H(li) and G{Ç) profiles. 

The grain size determinated according to the FWHM of each /(v) profile as the 

pure peak broadening, in Scherrer's equation is shown on Table 1.2. The peak 

position of each /(v) profile refers to either the peak position of the single peak or that 
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Figure 1.30 A deconvoluted /(v) profile (FWHM 0.145*) obtained from peaks A(v) and ^(v) at 

~27' of the samples. 
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Figure 1.31 A deconvoluted /(v) profile (FWHM 0.137*) obtained &om multiple peaks A(v) and 

^(v) at 35° -40° of the samples. 
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Figure 1.32 A deconvoluted /(v) profile (FWHM 0.139°) obtained from multiple peaks ir(v) and 

^(v) at 41° -45° of the samples. 
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Figure 1.33 A deconvoluted /(v) profile (FWHM 0.149°) obtained from multiple peaks b(y) and 

giy) at 55" - 60* of the samples. 
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Figure 1.34 A deconvoluted /(v) profile (FWHM 0.159°) obtained from peaks A(v) and ^(v) at 

~62° of the samples. 
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Figure 1.35 Comparison of the convoluted A'(v) profile with the input least squares spline smoothed A(v) 

profile. The A'(v) profile is obtained by the convolution of the least squares spline smoothed 

^(v) profile at ~27* of the sample pattern and the /(v) profile shown on Fig 1.30. 
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of the highest peak of the peak clusters. 

Table 1.2 Grain Size Determination for NdjFCj^B Ribbon 

by Fourier Deconvolution 

Two theta Peak Broadening Grain Size 
(degree) (degree) (Angstrom) 

26.96 0.145 359.9 

37.26 0.137 391.0 

42.32 0.139 391.6 

58.00 0.149 389.5 

62.84 0.159 374.0 

average 381.2 
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CONCLUSION 

Of the numerous methods for determining the grain size of a powdered sample, 

the Fourier deconvolution is the most powerful technique, as it can be used regardless of 

the functional nature ofthe profile ofthe recorded patterns. The FWHM of the 

deconvolved /(v) can be directly measured and used in Scherrer's formula, instead of 

having to be calculated by either = Bj^ - B^ or B = Bj^ - B^ depending on 

the mathematical functional nature of the peak. The method will also work whether the 

peaks in question are symmetrical or not. 

The grain size determined by Fourier deconvolution is in excellent agreement 

with that observed by the transmission electron microscope and comparable with that 

determined by Rietveld refinement. 

The truncation of the H(X) and <?(() files, i.e., the nullifying the H(X) 

and G(C) files beyond their corresponding background points in order to eliminate the 

accumulated discontinuities associated with them, is crucial for the success of the 

backward Fourier transform. General speaking, the ^(0 and G{Ç) files are the 

reciprocal C space expressions of the ^(v) and A(v) profiles in the v space. The 

wider the H{Ç) and G(jC) files are after truncation, the narrower the /(v) profile 

will be after the backward Fourier transform, but also the more noise and 

discontinuities which will remain. 
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On the other hand, if one truncates the H(jO and <7(() files too much, one 

will end up with a "wide" /(v) profile which might not accurately model the pure peak 

broadening contribution. 

The method used to determine the points in the H(X) and (?(() files for the 

starting points of the backgrounds appears reasonable but is not necessarily the best 

approach and needs further study in the future work. A simplex optimization 

technique^^^^ could be employed to carry out this task. Different truncating points 

could be chosen on the and G(C) files to obtain different /(v) profiles, which 

could subsequently be convoluted into the spline smoothed ^(v) profile to obtain 

different A'(v) profiles. A simplex minimization of the difference between the 

convoluted A'(v) profiles and the originally spline smoothed A(v) profile, could find 

out the best combination of the truncating point on the JI(0 file with that on the G 

(f) file, to yield the best /(v) profile. 

One of the advantages of the simplex optimization is that, in contrast to the 

commonly used least squares optimization which works with derivatives, it does not 

mathematically require an analytical relation of the truncating point to the difference 

between the A'(v) profile and the A(v) profile. Also, it guarantees convergency. 
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SECTION II 

STRUCTURE DETERMINATION OF SELECTED SULFUR-CONTAINING 

ORGANOMETALLIC COMPOUNDS BY X-RAY DIFFRACTION 

AND MOLECULAR MECHANICS METHODS 
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INTRODUCTION 

Benzo-[2,3]-4-methyl-thiophene and dibenzothiophene are two compounds 

which are important in petroleum industry. These sulfur containing compounds 

decompose during the crude oil heat treating procedure and give out sulfur which will 

poison the catalyst. Thus with the concern in the oil industry pertaining to efficiency 

and to the environment, it is of significance to carry out research on various aspects of 

these compounds. 

As a part of such research, an attempt was made in Dr. Angelici's group of the 

Department of Chemistry, ISU to synthesize neutral complexes from 4-methyl-benzo-

[2,3]-thiophene and dibenzothiophene, by reducing their cationic pentamethylcyclo-

pentadienyl complexes of iridium with an aluminum hydride. The products were 

expected as I : CgH^QS-Ir-[Cg(CHg)g] and II : C^2HioS-Ir-[Cg(CHg)g]. They were 

expected to form by the association of the Ir </-orbitals with the whole -system of the 

complexing benzo-group, hence implying that all carbon atoms in this group would 

remain aromatic, i.e., have sp^ character. 

However, X-ray diffraction results indicated that for both I and II the solid 

state products formed can be best described in terms of complexes in which two carbon 

atoms of a benzo - group of the ligand have been converted from sp^ \o sp^ character, 

due possibly to over reduction of the complexes. 
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In order to confirm the X-ray structural results, molecular mechanics 

calculations were employed to generate the corresponding sp^ and sp^ configurations 

of both complexes and compare their minimized total energies. 
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X-RAY STRUCTURE DETERMINATIONS 

The complexes I and II were repeatedly recrystallized from hexane solution 

(with trace amount of dimethylchloride); the final crystallization was carried out at low 

temperature (-80°C) with slow evaporation of the solvent. Yellow, transparent, 

parallelepipedonal crystals of complex I formed, while the crystals of complex II 

formed as prisms. 

For each complex, a crystal of approximate dimensions 0.3 x 0.4 x 0.5 mm was 

mounted on a glass fiber. As the complexes are not very stable, a thin layer of epoxy 

coating was spread over the entire surface of the crystal, isolating it from the 

atmosphere. Then the fiber was attached to a goniometer head and the whole assembly 

was put into a refrigerator until the epoxy had firmly hardened. 

All measurements were made at low temperature, -80°C, on a RIGAKU 

AFC6 diffractometer with graphite - monochromated Mo Ka radiation and a 12KW 

rotating anode generator. Using a search procedure, 25 reflections were selected within 

the range of 14° < 20 < 50° and centered carefully. Indices for these reflections were 

obtained from an automatic indexing program INDEX and cell parameters were 

determined using 13 high angle (25° <20 <35°) reflections and their Friedel 

counterparts. 

5715 reflections were measured for complex I and 6223 for complex II using 
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the w-20 scan technique. 2740 out of the measured 5715 reflections for complex I, 

and 4000 out of 6223 for complex II, were considered to be "observed" reflections 

with I > 3o(I). After averaging, 2585 reflections for complex I and 3632 reflections 

for complex II remained and were used for subsequent structure determination. The 

space group was uniquely determined to be I : P2j/a and II : P2j/n, from conditions 

limiting possible reflections; I ; (hOl, h=2n; OkO, k=2n) and II ; (hOl, h+l=2n; OkO, 

k=2n). Further experimental details are given in Tables II .1 and II .2. 

The structures were solved by direct methods and refined by full matrix least 

square refinement to a conventional residual indices of R = 5.1%, = 6.8% for I 

and R = 5.3%, R^ = 7.1% for II respectively, which are defined as 

£ N 

where w = 

g'- 'N - N»* 

/-I 

1 

"'(Kl) 

The final positional and equivalent isotropic thermal parameters, the bond distances and 

the bond angles are given in Tables II .3-11.8; The ORTEP'-'^ drawings of the 

molecules are shown in Fig. II .1 and Fig. II .2. Tables II .9 and II .10 contain the 

anisotropic temperature factors for the atoms. 
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TABLE II .1 Crystallographic Data for Complex I. 

Empirical Formula 
Formula Weight 
Crystal System 
Lattice Parameters: 

Space Group 
Z value 

^calc 
F ^000 
|x (Mo Ka) 

Diffractometer 
Radiation 
Temperature 

^®max 
No. Observations 
No. Variables 
Residuals: R; 
Goodness of Fit Indicator^ 
Max. Shift in Final Cycle 

^19^25^ 
477.67 
Monoclinic 
a = 10.786 (4)Â 
b= 10.039 (10)Â 
c= 15.214 (4)Â 
p = 100.26° (2) 

V = 1782 (2) 
P 2j/a (#14) 
4 
1.77 g/cm^ 
920 
80.49 cm • ' (correction applied) 
Rigaku AFC6 
Mo Ka (X = 0.71069Â) Graphite monochromated 
-80°C 
60.0° 

2585 (I > 3.00o(I)) 
190 
0.051; 0.068 
1.57 
0.02 

§ definition of R and R^, see text. 

t goodness of fit indicator is defined as: 

 ̂̂ observed ~ ^parameter̂  
where w = 1 
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TABLE II .2 Crystallographic Data for Complex II. 

Empirical Formula 
Formula Weight 
Crystal System 
Lattice Parameters: 

Space Group 
Z value 

^calc 
^000 
H (Mo K«) 
Diffractometer 
Radiation 
Temperature 

No. Observations 
No. Variables 
Residuals: R; R^^ 
Goodness of Fit Indicator^ 
Max. Shift in Final Cycle 

^22^25^ 
513.70 
Monoclinic 
a = 8.62 (7)Â 
b = 10.37 (2)Â 
c= 20.954 (8)Â 
P= 92.6° (1) 
V= 1872 (13)Â^ 
P2j/n(#14) 
4 
1.82 g/cm^ 
992 
76.73 cm " ' (correction applied) 
Rigaku AFC6 
Mo Ka (A, = 0.71069Â) Graphite monochromated 
- 8 0 X  
60.0° 

3632 (I > 3.00o(I)) 
217 
0.053; 0.071 
2.05 
0.01 

§ definition of R and R,„, see text. w 

t definition of goodness of fit indicator, see Table II. 1. 
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TABLE II .3 Positional parameters (xyz) and equivalent isotropic 
thermal parameters (A^) for complex I. 

z Beq 
atom X y 

Ir 0.27632(5) 0.01186(4) 0.78330(4) 3.12(2) 
S 0.4470(5) 0.0191(4) 0.6116(3) 5.8(2) 
Cl 0.305(2) -0.169(2) 0.625(1) 4.8(8) 
C2 0.344(2) -0.093(2) 0.567(1) 5.6(9) 
C3 0.330(2) -0.174(1) 0.803(1) 5.4(8) 
C4 0.401(2) -0.114(2) 0.874(1) 8.0(10) 
C5 0.532(2) -0.077(2) 0.875(1) 7.0(10) 
C6 0.557(2) -0.016(2) 0.792(2) 8.0(10) 
C7 0.438(1) -0.026(1) 0.721(1) 4.2(6) 
C8 0.357(1) -0.134(1) 0.717(1) 3.9(6) 
C9 0.210(2) -0.267(2) 0.605(1) 7.0(10) 
CIO 0.146(1) 0.096(1) 0.859(1) 3.5(6) 
Cll 0.136(2) 0.070(2) 0.955(1) 5.8(9) 
C12 0.227(1) 0.187(1) 0.8309(8) 3.1(5) 
C13 0.312(2) 0.273(1) 0.891(1) 5.6(8) 
C14 0.202(1) 0.190(1) 0.7357(8) 3.0(5) 
C15 0.264(2) 0.277(1) 0.678(1) 5.4(9) 
C16 0.105(1) 0.103(1) 0.706(1) 4.5(7) 
C17 0.053(2) 0.081(2) 0.609(1) 7.0(10) 
CIS 0.072(1) 0.045(1) 0.786(1) 4.7(7) 
C19 -0.025(2) -0.054(2) 0.786(2) 9.0(10) 
H5A(C5) 0.5578 -0.0165 0.9287 4.0 
H5B(C5) 0.5892 -0.1545 0.8858 4.0 
H6A(C6) 0.5799 0.0755 0.8055 4.0 
H6B(C6) 0.6327 -0.0591 0.7696 4.0 

^ J'l 

Where the coefficients of the anisotropic temperature factor 
expression are defîned as; 

P -2tt^(a'%ih^*y^Ui2»i^*e'^U„fi*2a'b'Uahk*2a'e'Vuhl*2b'e'U2ikl) 
"aniao ~ ® 
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TABLE II .4 Positional parameters (xyz) and equivalent isotropic 
thermal parameters (Â^) for complex II. 

atom X y z Beq 

Ir 0.92877(5) 0.31468(4) 0.65025(2) 1.82(2) 
S 0.8969(5) -0.0122(3) 0.6317(2) 3.3(1) 
Cl 0.943(1) 0.118(1) 0.6858(5) 2.309 
C2 0.793(1) 0.182(1) 0.6996(5) 2.3(4) 
C3 0.815(1) 0.296(1) 0.7386(5) 2.5(5) 
C4 0.974(1) 0.324(1) 0.7504(5) 2.7(5) 
C5 1.090(2) 0.221(1) 0.7746(7) 3.4(6) 
C6 1.059(1) 0.094(1) 0.7390(7) 3.3(6) 
C7 0.696(2) 0.020(1) 0.6275(6) 3.2(6) 
C8 0.657(2) 0.123(1) 0.6675(6) 3.0(6) 
C9 0.503(2) 0.161(1) 0.6699(6) 3.1(6) 
CIO 0.389(2) 0.097(2) 0.6326(8) 4.6(8) 
Cll 0.428(2) -0.005(2) 0.5947(7) 4.3(7) 
C12 0.585(2) -0.045(1) 0.5901(7) 4.1(7) 
CIS 0.995(2) 0.323(1) 0.5500(5) 2.6(5) 
C14 1.064(2) 0.215(1) 0.5136(6) 4.2(7) 
C15 1.087(1) 0.413(1) 0.5884(5) 2.1(4) 
C16 1.261(1) 0.425(1) 0.5948(7) 3.8(6) 
C17 0.980(2) 0.508(1) 0.6110(6) 2.7(5) 
C18 1.021(2) 0.622(1) 0.6550(6) 3.2(6) 
C19 0.827(1) 0.473(1) 0.5875(6) 2.5(5) 
C20 0.680(1) 0.547(2) 0.5995(7) 3.8(7) 
C21 0.836(1) 0.360(1) 0.5520(6) 2.8(5) 
C22 0.709(2) 0.287(1) 0.5162(7) 4.1(7) 
H3(C5) 0.2039 0.2520 0.7666 4.0 
H4(C5) 0.0787 0.2065 0.8237 4.0 
H5(C6) 0.0154 0.0252 0.7705 4.0 
H6(C6) 0.1625 0.0591 0.7207 4.0 

§ Bgq definition, see Table II .3. 
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TABLE II .5 Selected Bond Distances (Â) ^ for Complex I. 

atom atom distance atom atom distance 

Ir C3 2.14(1) Ir CS 2.16(1) 
Ir C7 2.16(2) Ir C12 2.16(1) 
Ir CIO 2.18(1) Ir C14 2.20(1) 
Ir C4 2.23(2) Ir C16 2.24(1) 
Ir CIS 2.24(1) S C2 1.72(2) 
S C7 1.76(2) Cl C2 1.34(2) 
Cl CS 1.47(2) Cl C9 1.49(2) 
C3 C4 1.37(3) C3 CS 1.45(2) 
C4 C5 1.47(3) C5 C6 1.49(3) 
C6 C7 1.53(3) C7 CS 1.47(2) 
CIO Cll 1.50(2) CIO CIS 1.38(2) 
CIO C12 1.45(2) C12 C14 1.43(2) 
C12 C13 1.51(2) C14 C16 1.43(2) 
C14 C15 1.53(2) C14 CIS 2.35(2) 
C16 CIS 1.47(2) C16 C17 1.51(2) 
CIS C19 1.51(2) 

t Estimated standard deviations in the least significant figure 
are given in parentheses. 
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TABLE II .6 Selected Bond Distances (Â) ^ for Complex II. 

atom atom distance atom atom distance 

Ir CI 2.18(1) Ir C2 2.11(1) 
Ir C3 2.14(1) Ir C4 2.12(1) 
Ir C13 2.20(1) Ir C15 2.18(1) 
Ir C17 2.22(1) Ir C19 2.26(1) 
Ir C21 2.22(1) S CI 1.79(1) 
S C7 1.76(2) Cl C2 1.49(2) 
Cl C6 1.48(2) C2 C3 1.44(2) 
C2 C8 1.46(2) C3 C4 1.42(2) 
C4 C5 1.54(2) C5 C6 1.53(2) 
C7 C8 1.41(2) C7 C12 1.39(2) 
C8 C9 1.38(2) C9 CIO 1.40(2) 
CIO Cll 1.37(2) Cll C12 1.42(3) 
C13 CM 1.50(2) C13 C15 1.45(2) 
C13 C21 1.43(2) C15 C16 1.50(2) 
C15 C17 1.45(2) C17 CIS 1.53(2) 
C17 C19 1.43(2) C19 C20 1.51(2) 
C19 C21 1.39(2) C21 C22 1.51(2) 

t Estimated standard deviations in the least significant figure 
are given in parentheses. 
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TABLE II .7 Selected Bond Angles (°) ® for Complex I. 

atom atom atom angle atom atom atom angle 

C2 S C7 91.8(8) C2 CI C8 111(2) 
CI C2 S 117(1) C4 C3 C8 113(2) 
C3 C4 C5 123(2) C4 C5 C6 116(2) 
C5 C6 C7 108(2) C8 C7 C6 120(1) 
C8 C7 S 109(1) C6 C7 S 118(1) 
C3 C8 Cl 133(2) C3 C8 C7 115(1) 
CI C8 C7 112(1) C18 CIO C12 110(1) 
C14 C12 CIO 108(1) C12 CM C16 107(1) 
C14 C16 C18 108(1) CIO CIS C16 107(1) 

§ Estimated standard deviations in the least significant figure 
are given in parentheses. 
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TABLE II .8 Selected Bond Angles (°) ^ for Complex II. 

atom atom atom angle atom atom atom angle 

C7 S CI 94.5(6) C6 CI C2 119(1) 
C6 Cl S 118(1) C2 CI S 107(1) 
C3 C2 C8 133(1) C3 C2 Cl 113(1) 
C8 C2 CI 114(1) C4 C3 C2 112(1) 
C6 C5 C4 110(1) CI C6 C5 109(1) 
C12 C7 C8 122(1) C12 CI S 126(1) 
C8 C7 S 112(1) C9 C8 Cl 120(1) 
C9 C8 C2 128(1) C7 C8 C2 112(1) 
C8 C9 CIO 120(1) Cll CIO C9 120(2) 
CIO Cll C12 122(1) C7 C12 Cll 117(1) 
C21 C13 C15 108(1) C17 C15 C13 106(1) 
C19 C17 C15 108(1) C21 C19 C17 109(1) 
C19 C21 C13 109(1) 

§ Estimated standard deviations in the least significant figure 
are given in parentheses. 
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Fig. II .1 ORTEP drawing of complex I. 

§ Other hydrogen atoms are omitted for clearness. 
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Fig. II .2 ORTEP drawing of complex II. 

§ Other hydrogen atoms are omitted for clearness. 
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TABLE II .9 Anisotropic parameters U.j ^ for Complex I. 

atom Ui, ^22 U33 U,2 Ui3 ^23 

Ir 0.0375(3) 0.0445(3) 0.0359(3) 0.0067(3) 0.0051(2) -0.0020(3) 
S 0.071(3) 0.095(3) 0.060(3) 0.002(3) 0.029(2) -0.002(3) 
Cl 0.034(7) 0.055(9) 0.07(1) 0.006(6) 0.001(7) -0.001(7) 
C2 0.05(1) 0.050(8) 0.05(1) 0.014(7) 0.005(7) -0.008(7) 
C3 0.06(1) 0.040(8) 0.11(2) 0.018(7) 0.01(1) 0.007(9) 
C4 0.12(2) 0.08(1) 0.10(2) -0.04(1) 0.05(1) -0.02(1) 
C5 0.05(1) 0.16(2) 0.06(1) 0.03(1) -0.01(1) -0.02(1) 
C6 0.06(1) 0.15(2) 0.09(2) -0.03(1) 0.01(1) -0.03(1) 
C7 0.08(1) 0.10(1) 0.031(8) 0.02(1) 0.002(8) -0.010(9) 
C8 0.06(1) 0.08(1) 0.05(1) 0.010(8) 0.004(8) -0.020(8) 
C9 0.09(1) 0.08(1) 0.07(1) -0.01(1) -0.01(1) -0.03(1) 
C13 0.045(8) 0.055(8) 0.018(6) -0.003(6) 0.001(5) -0.001(5) 
C14 0.09(1) 0.07(1) 0.05(1) 0.00(1) -0.00(1) -0.018(8) 
C15 0.036(8) 0.049(8) 0.05(1) 0.009(6) 0.024(7) 0.007(7) 
C16 0.08(1) 0.09(1) 0.05(1) -0.00(1) 0.03(1) 0.02(1) 
C17 0.036(8) 0.043(8) 0.10(1) 0.005(6) 0.007(9) -0.010(8) 
CIS 0.05(1) 0.07(1) 0.23(3) -0.02(1) 0.04(2) -0.02(2) 
C19 0.036(8) 0.07(1) 0.06(1) 0.024(7) -0.006(7) -0.026(8) 
C20 0.08(1) 0.10(1) 0.09(1) 0.02(1) -0.02(1) -0.04(1) 
C21 0.054(9) 0.043(7) 0.021(6) 0.002(6) 0.014(6) 0.005(5) 
C22 0.08(1) 0.07(1) 0.06(1) 0.00(1) 0.03(1) 0.019(9) 

§ The coefficients £A. of the anisotropic temperature factor expression 
are defined as: 

p *2a'b'U^hk*'2a'c'Vuhl*2b'e'U^kl) 
"anbo - ® 



www.manaraa.com

103 

TABLE II .10 Anisotropic parameters ^ for Complex II. 

atom U22 U33 U,2 U,3 U23 

Ir 0.0270(2) 0.0212(2) 0.0209(2) 0.0009(2) -0.0002(1) 0.0019(2) 
S 0.062(2) 0.027(2) 0.039(2) 0.003(2) 0.018(2) •0.004(1) 
Cl 0.036(6) 0.034(7) 0.020(6) 0.000(5) 0.007(5) 0.005(5) 
C2 0.039(6) 0.032(6) 0.018(5) -0.000(6) 0.003(4) 0.011(5) 
C3 0.048(7) 0.033(7) 0.013(5) 0.008(6) 0.006(5) •0.012(5) 
C4 0.049(7) 0.042(7) 0.010(4) 0.003(6) 0.001(4) 0.006(5) 
C5 0.041(7) 0.043(8) 0.042(8) 0.008(6) -0.011(6) 0.004(6) 
C6 0.035(7) 0.046(8) 0.045(8) 0.012(6) 0.004(6) 0.021(7) 
C7 0.049(8) 0.035(8) 0.039(8) -0.009(6) 0.000(6) 0.011(6) 
C8 0.045(8) 0.027(7) 0.040(7) •0.003(6) -0.003(6) 0.007(6) 
C9 0.043(7) 0.040(8) 0.032(7) -0.003(6) •0.005(5) 0.012(6) 
CIO 0.06(1) 0.05(1) 0.06(1) -0.013(8) -0.024(8) 0.031(9) 
c i l  0.08(1) 0.05(1) 0.030(7) -0.031(9) -0.014(7) 0.012(7) 
C12 0.09(1) 0.030(7) 0.040(8) -0.016(8) 0.005(8) -0.001(6) 
C13 0.051(7) 0.023(6) 0.024(6) 0.001(6) 0.002(5) -0.004(5) 
C14 0.10(1) 0.039(8) 0.028(7) 0.010(8) 0.022(7) 0.003(6) 
C15 0.034(6) 0.027(6) 0.019(5) 0.002(5) 0.001(4) 0.007(4) 
C16 0.030(7) 0.046(9) 0.07(1) 0.002(6) 0.003(6) 0.028(8) 
C17 0.049(7) 0.023(6) 0.028(6) -0.008(5) -0.013(5) 0.009(5) 
C18 0.063(9) 0.027(7) 0.029(7) -0.010(6) •0.015(6) -0.007(5) 
C19 0.033(6) 0.021(6) 0.041(7) 0.004(5) -0.003(5) 0.013(5) 
C20 0.030(7) 0.052(9) 0.06(1) 0.005(7) 0.003(6) 0.009(8) 
C21 0.038(7) 0.033(6) 0.033(7) -0.006(6) -0.007(5) 0.013(5) 
C22 0.07(1) 0.05(1) 0.039(8) -0.020(8) -0.015(7) -0.001(6) 

§ Definition for £^, see Table II .9 



www.manaraa.com

104 

In structure I, the C4-C5, C5-C6 and C6-C7 bond distances (1.52 ~ 1.55 

Â), the bond angles at C5 and C6 (110°), and the deviation of C5 and C6 from the 

least squares plane defined by C3, C4, C7 and C8 (0.97 Â and 0.85 Â respectively, 

see Table II .11), all indicate that C5 and C6 are hydrogenated to be methylene 

carbons rather than phenyl carbons. 

Similarly in structure II, the C4 - C5, C5 - C6 and C6 - CI bond distances 

(1.48 ~ 1.45 A), the bond angles at C5 and C6 (ca. 110°), and the deviation of C5 

and C6 from the least squares plane defined by S, CI, C2, C3 and C4 (0.93 Â and 

1.11 Â respectively, see Table 11.12), also indicate the two carbon atoms, C5 and C6, 

are hydrogenated to be metylene carbons rather than phenyl carbons. 

Solution 'h NMR spectra also showed that for I there were high-field 

multiplets (Ô 1.74 and 1.56 ppm) in addition to the intermediate signals located at 

b 2.76 and 4.77 ppm for the hydrogen atoms associated with the former phenyl ring 

carbons of the benzothiophene, which now apparently have a diene character; and the 

low-field signal (ë 6.19 ppm) for the hydrogen atoms associated to the carbon atoms 

of the thiophene which is uncoordinated with the Ir atom. 

Also, for II there were high-field multiplets (6 1.88 and 1.50 ppm) in 

addition to the intermediate signals located at Ô 2.99 and 5.30 ppm for the hydrogen 

atoms associated with the carbons coordinated with the Ir atom; and the low-field 

quartet signals %&B163, IF.39, 7.1A LBdsfZiCRgipm^ £iiatiaeifay6taa(gjpÉeatdms associated 
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Atoms Defining Plane Distance(Â.) esdCA) 
Cl - 0.0178 0.0139 
C8 0.0342 0.0139 
C3 -0.0475 0.0164 
C4 0.0438 0.0212 

(Mean deviation from plane is 0.0358 Â) 

Additional Atoms Distance (Â) 

C5 0.9031 
C6 0.8253 

Table 11.12 A Least - Squares Plane in Complex II. 

Atoms Defining Plane DistancerÂI esdrÂ) 

S 0.0074 0.0037 
Cl -0.1076 0.0119 
C2 - 0.0225 0.0117 
C3 0.0099 0.0120 
C4 0.0526 0.0127 

(Mean deviation from plane is 0.0400 Â) 

Additional Atoms Distance (Â) 

C5 
C6 

- 0.9290 
-1.1070 
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with the carbon atoms of the other aromatic ring in the dibenzothiophene which is 

uncoordinated with the Ir atom. 

These high-field signals indicated that there were carbon atoms in the 

benzothiophene or dibenzothiophene group which have a different chemical environment 

from those of the other carbon atoms in the compounds. 

Although in both cases, it was not possible from a difference electron density map 

to verify the presence of two hydrogen atoms attached to each of these carbons, it was 

found that, in both structures, an elimination of one hydrogen atom from C5 and C6 

respectively caused the R-factor to increase by ca, 0.1% after least squares 

refinement, which also indicated that C5 and C6 are methylene carbons. 

In order to obtain additional evidence for the reasonableness of the postulate that 

the benzo-groups of both I and II were over reduced such that the two carbon 

atoms, C5 and C6, had been converted from to j/;"'character, as the above 

evidences had suggested, molecular mechanics calculations were carried out. 
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MOLECULAR MECHANICS MODELING 

General Description 

Molecular mechanics^^^ is a calculational method designed to give accurate 

a priori structures and energies for molecules. It is based on the ideas that there are 

bonds between atoms in molecules and there are Van der Waals forces between 

non-bonded atoms, that bonds have "natural" lengths and angles, and that molecules 

will adjust their geometries so as to take up these values of bond lengths and angles in 

simple cases. It also employs the fundamental formulations of vibrational spectroscopy. 

In practice, molecular mechanics calculations employ an empirically derived set 

of equations for the Born -Oppenheimer surface, which is the multi-dimensional 

"surface" that describes the energy of the molecule in terms of the nuclear positions. 

This set of potential functions is called the force fîeld and contains adjustable 

parameters that are optimized to obtain the best fit of calculated and experimental 

properties of the molecules, such as geometries, conformational energies, heats of 

formation, or other properties. It is also assumed that corresponding parameters and 

force constants may be transferred from one molecule to another, i.e., these quantities 

are evaluated for a set of compounds and thereafter the values are fixed and can be used 
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for other similar compounds. In the ordinary case, the force field is established by 

certain sets of equations, and the adjustable parameters are optimized. 

Simple molecular mechanics force fields include bond stretching, angle bending, 

torsion, and Van de Waals interactions in their make-up, 

- E ^ E » E n»,» ^ E (') 

where the summations extend over all bonds, bond angles, torsion angles, and 

non-bonded interactions between all atoms not bound to each other or to a common 

atom (i.e., 1,4-interactions and higher). 

When a molecule with n atoms, which are defined in terms of 3n coordinates 

jTy,  is deformed from its geometry of minimum potential energy and coordinates X q  

, the potential energy may be written in a Taylor series expansion as: 

= ^0 + E Ax, + (  e i 'v )  
AXfi iXj  

[^ i )o  

1 ^  W W  \  

31 

In a vibrational analysis of a molecule having a geometry corresponding to a 

potential energy minimum, the first term Vq is taken as zero. Also the second term 

vanishes at this geometry due to the nullification of the first derivative by the definition 

of the potential minimum. If the displacements of the vibration are sufficiently small, 

the fourth and the "higher terms" in (2) can be neglected (harmonic approximation'-^^). 
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The second derivatives in the third term are called the force constants, which are 

arranged in the form of a matrix, the terms with / = j being diagonal, and the 

cross-terms with / ** y being off-diagonal. Denoting the force constants 

'••(SI 
the potential energy in a harmonic force field is simply 

^ U-1 

If the valence force fîeld is adopted, which best fits ordinary chemical ideas 

about the nature of the forces acting in a molecule, all the off-diagonal force constants 

are neglected. This results, in terms of the equilibrium bond lengths r, bond angles 6, 

and torsion angles S), in a force field with a Hooke's law harmonic potential 

^hamonk = T /r.i ( »"< "'"i" 
(4) 

where the first term in (4) accounts for the bond stretching, the second term for the 

bending, and the third term for the torsion. 

However, considering there may be non-negligible deformation of the "natural" 

molecule during the molecular modeling, the molecular mechanics force fields 

recruits the cubic term of (2), which result in the potential energies of the stretching, 
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bending, torsion and Van der Waals being expressed as follows, respectively: 

^ k 
(5) 

VdW 1 -61 a I - V ' / 

The form of Vy^ is subject to the situation under which the torsion occurs. All the 

functions in (5) are parameterized based on the vibrational spectroscopic data, and 

undergo least squares refinement on the parameters, kj, with respect to the data y. : 

^ 9y, 
y, (improved) = y, (initial) + ^ ^ ÔL 

j.i dkj 

Results and Discussion 

Both structures were modeled using a molecular mechanics program'-^l In each 

case calculations were done first assuming carbons CS and C6 to be methylenic and 

then aromatic. The results obtained are shown in Figures II .3-11.6. For I, the 

aromatic configuration has a converged energy - 86.309 kCal whereas the aliphatic 
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Figure n.3 Molecular mechanics refinement for I, assuming carbons C5 and C6 to be aromatic. 

A4MX ENERSY -86.309 KCal 
8TR .30 BEND 14.87 S-B -.21 TOR 11.30 

VOW -112.67 OXP .32 OXPOLE MOMENT 2.00B2 
Heat of Formation —90.a04 Strain anergy —87.749 
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Figure n.4 Molecular mechanics refinement for 1, assuming carbons CS and C6 to be aliphatic. 

IP 

H 

MMX ENERGY -86.301 kCal 
STA .34 BENO 14.91 S-B -.17 TOR 10.83 
VOW -113.83 DIP -.28 DIPOL.E MOMENT 2.2188 
Heat of Formation —112.B70 Strain energy —90.S81 



www.manaraa.com

Figure II .5 Molecular mechanics refinement for n, assuming carbons C5 and C6 to be aromatic. 

w 

^MX ENERGY -72.SOS kCal 

BTR .31 BEND IB.13 S-B -.20 TOR 21.38 

VOW -IIO.BB DIP 2.OS DZPOLE MOMENT 2.1802 

H#at of Formation -S3.870 Strain onergy -73.40S 
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Figure II .6 Molecular mechanics refinement for n, assuming carbons C5 and C6 to be aliphatic. 

i 

70.S13 kCal WMX ENERGY 
6TA .37 BEND IS.SI S-B -.17 TOR 19.S8 
VOW -112.21 OXP 1.43 OXPOL.E MOMENT 2.4123 
Heat of Formation —77.0B2 Strain energy —77.S33 
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configuration has - 88.301 kCal; For II, it was - 72.205 kCal of the aromatic against 

- 75.513 kCal of the aliphatic configuration. Those indicate that the aliphatic 

configurations are more stable. 

Tables II .13 and II .14 compare bond distances for the X-ray results and the 

molecular mechanics calculation assuming C5 and C6 to be aliphatic and aromatic 

respectively in structures I and II; and in Tables 11.15 and 11.16 for the bond 

angles. In terms of bond lengths, one can see from Tables II .13 and 11.14, for bonds 

not involving C5 and C6, ô^'s (the difference between the molecular mechanics 

calculation, in which C5 and C6 were assumed aliphatic, and the X-ray results) are 

all comparable with ôg's (a similar quantity, but C5 and C6 were assumed 

aromatic). However, for those bonds involving C5 and C6, ôg's are all much 

greater than ô^'s. [For three bonds of this kind, the average of the absolute length 

difference value, Ag is 0.09 Â vs. that of being 0.04 Â for I; and Ag is 0.11 Â 

Ks. that of A^ being 0.02 Â for II]. Similarly, in Tables 11.15 and 11.16, one can 

see the same thing happens to the bond angles involving C5 and C6, i.e., Ag = 7° vs. 

A^ = 3° for I; Ag = 9.5° vs. A^ = 4.5° for II. 
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TABLE 11.13 Comparison of Bond lengths (Â) for I with those obtained 
from molecular mechanics calculations with CS and C6 

as Aliphatic (A) and Aromatic (B). 

atom atom X-ray A B 

Ir CI 2.16(2) 2.32 0.16 2.30 0.14 
Ir C2 2.16(1) 2.06 

o
 

o
 2.02 -0.14 

Ir C3 2.14(1) 2.02 -0.12 2.04 -0.10 
Ir C4 2.23(2) 2.29 0.06 2.34 0.11 
Ir C13 2.16(1) 2.07 -0.09 2.06 -0.10 
Ir CIS 2.18(1) 2.08 

o
 

o
 2.05 -0.13 

Ir C17 2.24(1) 2.07 -0.17 2.05 -0.19 
Ir C19 2.24(1) 2.06 -0.18 2.06 -0.18 
Ir C21 2.20(1) 2.06 -0.14 2.05 -0.15 

a"!" for Ir-C bonds II p
 

= 0.138 

S 
S 

A fiai-

Cl 
C7 
s -c  

1.76(2) 
1.72(2) 

bonds 

1.77 
1.77 

0.01 
0.05 

= 0.03 

1.77 
1.77 

0.01 
0.05 

Ag = 0.03 

CI C2 1.47(2) 1.40 -0.07 1.40 -0.07 
C3 C2 1.45(2) 1.40 -0.05 1.40 -0.05 
C3 C4 1.37(3) 1.40 0.03 1.41 0.04 
C8 C2 1.47(2) 1.41 -0.06 1.41 -0.06 
C8 C7 1.34(2) 1.41 0.07 1.41 0.07 
C8 C9 1.49(2) 1.50 0.01 1.50 0.01 
C13 CM 1.51(2) 1.50 -0.01 1.50 -0.01 
C13 C21 1.43(2) 1.41 -0.02 1.41 -0.02 

§ Ô is the difference between the molecular mechanics result and 
that of the X-ray investigation. 

t A is the average of the absolute value of &, i.e., A is defined as 

t\M 
A 

n 
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TABLE II .13 (Continued) 

atom atom X-ray A B ôg 

C15 C13 1.45(2) 1.41 -0.04 1.41 -0.04 
C15 C16 1.50(2) 1.50 0.00 1.50 0.00 
C15 C17 1.38(2) 1.41 0.04 1.41 0.04 

C19 C17 1.47(2) 1.41 -0.06 1.41 -0.06 
C19 C20 1.51(2) 1.50 - 0.01 1.50 - 0.01 

C21 C19 1.43(2) 1.41 -0.02 1.41 -0.02 
C21 C22 1.53(2) 1.50 - 0.03 1.50 - 0.03 

A for bonds NOT involving C:5 and C6 =0.03^ Ag =0.03g 

C4 C5 1.47(3) 1.51 0.04 1.41 -0.06 
C5 C6 1.49(3) 1.53 0.04 1.41 -0.08 
C6 CI 1.53(3) 1.50 -0.03 1.40 -0.13 

A for bonds involving cs and C6 A^= 0.03^ Ag = 0.09Q 
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TABLE 11.14 Comparison of Bond lengths (A) for II with those obtained 
from molecular mechanics calculations with C5 and C6 

as Aliphatic (A) and Aromatic (B). 

atom atom X-ray A B 

Ir C2 2.11(1) 2.04 -0.07 2.02 -0.09 
Ir C4 2.12(1) 2.30 0.18 2.33 0.21 
Ir C3 2.14(1) 2.01 -0.13 2.04 -0.10 
Ir CI 2.18(1) 2.32 0.14 2.30 0.12 
Ir C15 2.18(1) 2.07 -0.11 2.06 -0.12 
Ir C13 2.20(1) 2.07 -0.13 2.07 -0.13 
Ir C17 2.22(1) 2.06 -0.16 2.05 -0.17 
Ir C21 2.22(1) 2.06 -0.16 2.06 -0.16 
Ir C19 2.26(1) 2.06 -0.20 2.05 -0.21 

A^ for Ir - C bonds = 0.142 Ag = O.Mg 

S C7 1.76(2) 1.77 0.01 1.77 0.01 
S CI 1.79(1) 1.77 -0.02 1.77 -0.02 

A for S -C bonds — O.Olg Ag = O.Olj 

CI C2 1.49(2) 1.41 -0.08 1.41 -0.08 
C2 C3 1.44(2) 1.40 -0.04 1.40 -0.04 
C2 C8 1.46(2) 1.41 -0.05 1.41 -0.05 
C3 C4 1.42(2) 1.40 -0.02 1.41 -0.01 
C7 C12 1.39(2) 1.40 0.01 1.40 0.01 
C7 C8 1.41(2) 1.40 -0.01 1.41 0.00 
C8 C9 1.38(2) 1.40 0.02 1.40 0.02 
C9 CIO 1.40(2) 1.41 0.01 1.41 0.01 
CIO Cll 1.37(2) 1.41 0.04 1.41 0.04 
Cll C12 1.42(3) 1.40 -0.02 1.41 -0.01 
C13 C21 1.43(2) 1.41 -0.02 1.41 -0.02 
C13 C15 1.45(2) 1.41 -0.04 1.41 -0.04 
C13 C14 1.50(2) 1.50 0.00 1.50 0.00 

§ 8 is the difference between the molecular mechanics result and 
that of the X-ray investigation. 

t definition of A see Table II .13. 
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TABLE II .14 (Continued) 

atom atom X-ray A 5^® B ôg 

C15 C17 1.45(2) ÎÂi -0.04 Ml -0.04 
C15 C16 1.50(2) 1.50 0.00 1.50 0.00 
C17 C19 1.43(2) 1.41 -0.02 1.41 -0.02 
C17 CIS 1.53(2) 1.50 -0.03 1.50 -0.03 
C19 C21 1.39(2) 1.41 0.02 1.41 0.02 
C19 C20 1.51(2) 1.50 -0.01 1.50 -0.01 
C21 C22 1.51(2) 1.50 -0.01 1.50 -0.01 

à for bonds NOT involving C5 and C6 = O.OI5 Ag = O.OI3 

CI C6 1.48(2) 1.50 0.02 1.40 - 0.08 
C4 C5 1.54(2) 1.51 -0.03 1.41 -0.13 
C5 C6 1.53(2) 1.53 0.00 1.40 -0.13 

A for bonds involving C5 and C6 A^ = O.Olg Ag = O.II3 



www.manaraa.com

120 

TABLE 11.15 Comparison of Bond Angles (°) for I with those obtained 
from molecular mechanics calculations with CS and C6 

as Aliphatic (A) and Aromatic (B). 

atom apex atom X-ray A B 

C2 Ir Cl 39.9(5) 36.8 -3.1 37.2 -2.7 

C3 Ir C2 39.5(6) 40.1 0.6 40.3 0.8 

C3 Ir C4 36.5(6) 37.4 0.9 36.6 0.1 
C3 Ir C17 113.3(6) 111.2 -2.1 113.1 -0.2 

C13 Ir C21 38.2(4) 39.6 1.4 39.8 1.6 
C15 Ir C17 36.3(6) 39.9 3.6 40.1 3.8 

C19 Ir C17 38.2(6) 40.0 1.8 40.1 1.9 
C21 Ir C17 63.8(5) 67.0 3.2 67.1 3.3 

C21 Ir C19 37.6(5) 39.8 2.2 39.8 2.2 
A' for angles at Ir = 2.1 = 1.8 

C7 S Cl 91.8(8) 90.4 -1.4 90.4 -1.4 

C2 Cl S 109(1) 111 2 112 3 
C6 Cl s 118(1) 123 5 125 7 

C2 Cl C6 120(1) 126 6 123 3 
C3 C2 Cl 115(1) 120 5 119 4 

C3 C2 C8 133(2) 126 -7 127 -6 

C8 C2 Cl 112(1) 114 2 114 2 

C4 C3 C2 113(2) 119 6 119 6 

C3 C4 C5 123(2) 124 1 122 -1 

C8 Cl S 117(1) 112 -5 113 -4 

C7 C8 C2 111(2) 112 1 112 1 

C7 CS C9 128(2) 123 -5 124 -4 
C2 C8 C9 121(2) 125 4 124 3 

§ ë is the difference between the molecular mechanics result and 
that of the X-ray investigation. 

t definition of A see Table II .13. 
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TABLE II .15 (continued) 

atom apex atom X-ray A B «B 

C21 C13 CIS 108(1) lOS 0 108 0 
C21 C13 C14 126(1) 127 1 126 0 

C15 C13 C14 126(1) 126 0 126 0 

C13 CIS C16 125(1) 126 1 126 1 
C17 CIS C13 110(1) lOS -2 108 -2 

C17 CIS C16 125(1) 126 1 126 1 
C15 C17 CIS 127(2) 126 -1 126 -1 

CIS C17 C19 107(1) 108 1 108 1 
C19 C17 CIS 126(2) 126 0 126 0 

C17 C19 C20 129(2) 126 -3 127 -2 

C21 C19 C17 lOS(l) lOS 0 108 0 

C21 C19 C20 123(2) 126 3 126 3 
C13 C21 C19 107(1) 108 1 108 1 

C13 C21 C22 125(1) 126 1 126 1 

C19 C21 C22 127(1) 126 -1 127 0 
A for angles NOT at and CO = 2.4 = 2.1 

C4 cs C6 116(2) l i s  -1 120 4 

C5 C6 CI 10S(2) 113 5 118 10 
A for angles AT Ci and C6 = 3.0 = 7.0 
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TABLE 11,16 Comparison of Bond Angles (°) for II with those obtained 
from molecular mechanics calculations with CS and C6 

as Aliphatic (A) and Aromatic (B). 

atom apex atom X-ray A B 

C15 Ir C13 38.5(4) 39.8 1.3 39.9 1.4 
C2 Ir C3 39.6(4) 40.4 0.8 40.4 0.8 
C15 Ir C17 38.4(5) 39.9 1.5 40.0 1.6 
C2 Ir Cl 40.8(5) 37.0 -3.8 37.2 -3.6 
C13 Ir C21 37.5(5) 39.9 2.4 39.9 2.4 
C4 Ir C3 38.8(5) 37.2 -1.6 36.7 -2.1 
C17 Ir C19 37.3(5) 40.0 2.7 40.1 2.8 
C4 Ir Cl 72.4(5) 74.3 1.9 72.9 0.5 
C21 Ir C19 36.2(5) 40.0 3.8 40.1 3.9 

A* for angles at Ir = 2.2 = 2.1 

C7 S Cl 94.5(6) 9 0.2 -4.3 89.9 -4.6 

C6 Cl C2 119(1) 126 7 123 4 
C6 Cl S 118(1) 123 5 125 7 
C2 Cl S 107(1) 112 5 112 5 
C3 C4 CS 122(1) 124 2 122 0 
C3 C2 es 133(1) 127 -6 128 -5 
C3 C2 Cl 113(1) 120 7 119 6 
C8 C2 Cl 114(1) 113 -1 113 -1 
C12 Cl C8 122(1) 122 0 122 0 
C12 Cl S 126(1) 126 0 126 0 
C8 Cl S 112(1) 112 0 112 0 
C4 C3 C2 112(1) 119 7 119 7 
C9 C8 Cl 120(1) 120 0 120 0 
C9 es C2 128(1) 128 0 128 0 
CIO Cil  C12 122(1) 120 -2 120 -2 

§ ë is the difference between the molecular mechanics result and 
that of the X-ray investigation, 

t definition of A see Table II .13. 
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TABLE II .16 (continued) 

atom apex atom X-ray A B 

C7 €8 €2 112(1) 113 1 113 1 
C7 €12 €11 117(1) 118 1 119 2 
C21 €13 €15 108(1) 108 0 108 0 
C21 €13 €14 128(1) 127 -1 127 -1 
C8 €9 €10 120(1) 119 -1 119 -1 
C15 €13 €14 123(1) 126 3 125 2 
Cil €10 €9 120(2) 121 1 121 1 
C17 €15 €13 106(1) 108 2 108 2 
€17 €15 €16 125(1) 126 1 126 1 
€13 €15 €16 128(1) 126 -2 126 -2 
€21 €19 €17 109(1) 108 -1 108 0 
€21 €19 €20 126(1) 125 -1 126 0 
€17 €19 €20 125(1) 127 2 126 1 
€19 €17 €15 108(1) 108 -1 108 0 
€19 €17 €18 126(1) 126 0 126 0 
€19 €21 €13 109(1) 108 -1 108 -1 
€15 €17 €18 126(1) 126 0 126 0 
€19 €21 €22 129(1) 126 -3 126 -3 
€13 €21 €22 122(1) 126 4 126 4 

A for angles NOT at €5 and €6 = 2.1 = 1.8 

€6 €5 €4 110(1) 115 5 120 10 
€1 €6 €5 109(1) 113 4 118 9 

A for angles AT Ci and C6 = 4.5 Ag = 9.5 
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CONCLUSION 

The above comparisons between the X-ray diffraction structural results and the 

molecular mechanics modeling results show that in the molecular mechanics calculation, 

if methylenic C5 and C6 carbons are assumed, the deviations of the results from that 

of the X-ray diffraction investigations are much smaller. This further confirms that C5 

and C6 are of character instead of sp^, and hence there should be two hydrogen 

atoms associated with C5 and C6 respectively, in both structures I and II. The 

conversion of C5 and C6 in the phenyl ring of the reactant to aliphatic carbons in the 

resultants is most likely due to the over reduction of the complexes by the strong reducing 

reagent aluminum hydride. 

In the crystallographic approach, the power of an X-ray diffraction structural 

determination to reveal the "real" configuration of the crystallized compound is 

demonstrated. Also one can see that molecular mechanics modeling can be another 

powerful tool and be a good supplement to the former, and can confirm some 

"suspicious" points in the results of the former. Molecular mechanics modeling can even 

make some "difficult to solve" structures possible by the X-ray methods. As an 

example, one can refer to the recent research results of the combination of X-ray 

diffraction structure determination and molecular mechanics modeling in our group^^l 
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SECTION III 

AN ALIGNMENT PROCEDURE 

FOR A HILGER-WATTS DIFFRACTOMETER 

ON A RIGAKU ROTATING ANODE X-RAY GENERATOR 



www.manaraa.com

128 

INTRODUCTION 

Alignment of an X-ray diffractometer is a necessity both as part of initial 

installation and at other times, especially after changing a filament in a rotating anode 

X-ray generator, or changing a sealed X-ray tube. 

Alignment is usually carried out following the instructions provided by the 

manufacturer, with the X-ray beam produced by the generator as the detectable 

medium. 

When the diffractometer is completely out of alignment, using X rays to align 

the diffractometer can be tedious and sometimes even hazardous; the X-ray beam is 

often not confined in a safe path, and the person carrying out the alignment could be in 

danger of being exposed to the X rays scattered by the off-alignment parts for a long 

time, even though the scattered beam is of low intensity. Usually the only way to 

determine the position of the X-ray beam is by using a fluorescent screen or an 

alignment jig with fluorescent material pasted around the jig hole. A person often needs 

to approach very close to the fluorescent spot since the fluorescence is weak. 

In order to obtain a crude alignment before the more precise X-ray alignment is 

performed, an optical alignment procedure making use of ordinary optical telescopes 

was developed. This provides a visible alignment operation as contrasted to the use of 

the invisible, hazardous X-ray trial-and-error type of operation. This was carried 
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out on a Hilger-Watts diffractometer with a RIGAKU Rotating Anode X-ray 

generator as well as a DATEX diffractometer with a sealed X-ray tube; both resulted 

in a quick and safe alignment. 

The Hilger-Watts four-cycle diffractometer was manufactured in the early 

1960s and two such units were purchased by the Ames Laboratory in the mid-1960s for 

X-ray and for neutron diffraction. The Hilger-Watts diffractometer's design is 

different from most of the other units available today. Its measuring system is entirely 

free from the mechanical effects of wear and backlash, since the movement and the 

positioning of its four circles are controlled by a Moiré fringe technique: 

The four circles are engraved with radial gratings (3,600 lines in w, (|> and %; 

1,800 lines in 20), and the measuring heads are fitted with a small segment of a similar 

crossed grating as a reference. Light is projected through the two gratings and, as the 

circle revolves and the gratings move past one another, a Moiré fringe pattern travels 

across the field at right angles to the direction of movement. 

The measuring head, which contains a lamp and a photocell assembly, examines 

the fringe movements through four separate silicon photocells whose output takes the 

shape of approximately sinusoidal waveforms in quadrature (Figure III. 1) thus 

providing complete and continuous information about the direction of the movement 

and the position of the circle. 

The sinusoidal output from the measuring heads is converted electronically into 
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one tenth fringe increments, and these represent circle displacements of 0,01 ° for w, <|> 

and X circles, and 0.02° for 20 circle. These are entirely unaffected by the gearing or 

by backlash in the drive. 

Each radial grating is marked with a datum point which is detected by a separate 

measuring head to the same accuracy; so an automatic check can be made on the setting 

accuracy at any time. The absolute position of the circles can be read from scales and 

micrometer heads. 

The diffractometer ceased being used since the late 1960s due to the instability of 

the light source (the lamp deteriorates during usage, thus affecting the intensity detected 

by the photocell assembly) and instabilities in the related electronic parts. Both 

diffractometers were put into storage. 

Recently a decision was made by Dr Jacobson after discussion with Harold 

Skank, head of the Instrumentation Services Department in the Ames Laboratory, 

to try to place one of these units back into operation, and make use of a free port of the 

high intensity RIGAKU Rotating Anode X-ray generator. This seemed feasible 

because a new type of light source is now available which is a solid state device, a light 

emitting diode, with very long life time, and electronic components for the detector 

assembly are now available with much more stable characteristics. Thanks to the effort 

of Harold Skank and workers in his Instrumentation Services Department and the 

Machine Shop of the Ames Laboratory, one diffractometer was reassembled making 
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use of parts from the two stored Hilger-Watts units. It now resides on one of the two 

X-ray ports of the RIGAKU Rotating Anode X-ray generator. The design of parts 

for collimator housing and related hardware and the alignment of this unit were done by 

the author of this dissertation. 

In this section, details regarding the combination of the optical and X-ray 

alignment procedure employed for the Hilger-Watts diffractometer is discussed on a 

step-by-step basis. 
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Figure III .1 'Moiré fringe patterns and the sinusoidal output 
of the measuring head on the patterns. 

PHOTOCELLS 

lull 

f -  M A X  



www.manaraa.com

133 

LEVELING AND VERIFYING POINT OF AXIAL INTERSECTION 
IN THE ALIGNMENT OF THE DIFFRACTOMETER 

1. Level the diffractometer base: 

Put an air bubble level on the round track for the Theta arm. For two 

perpendicular orientations of the level on the track, make the bubble reside at the middle 

line, by turning the three bolts, if necessary. 

2. Level the Theta arm: 

Set Theta at 0°. Put the level on top of the counter and shim it if necessary to 

make the bubble reside on the middle line. When turning theta from the positive 

maximum to negative maximum angle; the bubble should stay invariant. 

3. Adjust the intersection of the goniometer axes to a common point: 

This is done by mounting a needle on the goniometer head, and rotating the 

Phi, Chi and Omega axes. On viewing from a leveled telescope which may have to be 

set beside the diffractometer on the same table, with its internal cross hairs well focussed, 

the position of the tip should be invariant with respect to the intersection of the hairs 

upon rotations. If not, the position of the needle with respect to the goniometer head 

should be adjusted if deviation appears upon Phi rotation, or the position of the 

goniometer head and the Phi motor assembly should be adjusted with respect to the 
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Chi-circle if deviation appears upon Chi rotation. 

4. Alignment of the Phi and Omega axes: 

This is done by setting Chi = 0°, rotating Phi in one direction, followed by a 

rotation of Omega in the opposite direction by the same amount. The position of the 

tip of the needle should be invariant. If not, the base of the Chi-circle must be 

shimmed. 
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SETTING ANGLES FOR THE MONOCHROMATING CRYSTAL 
AND OBTAINING AN X-RAY BEAM 

1. Close the shutter via the panel switch and bring the generator up. 

2. Fit a round piece of fluorescent screen onto the slit holder opening with the 

fluorescent side out, and mark the vertical diameter of the slit holder opening on it. 

3. Unlock the crystal holder clamping screw and the slit holder clamping screw. 

Set both the angle of the monochromating crystal (6) and the angle of the reflected 

beam (20) to zero. Push the slit holder into the microswitch and use scotch tape to fix 

this position, so that the microswitch stays depressed and the shutter switch on the panel 

can function. 

4. Shield the beam path at the end of the table with a thick sheet of lead. 

Be careful, you will be dealing with the strong direct beam from the anode! Turn 

off the light in the lab. Open the shutter on the panel. A round, evenly bright image of 

the primary beam should be seen on the round fluorescent screen and the vertical 

diameter of the spot should be coincident with the mark on the screen. If not, move the 

slit holder or turn the crystal vernier to make it so. This is the zero angle for both the 

monochromating crystal and the reflected beam. Turn on the light in the lab. 
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5. Turn the crystal approximately 6' away and move the slit holder 12° away 

from their zero points if a graphite monochromator is used, as the Bragg angle of 

Mo Ka is about 6.08° for its (0002) plane. Knowing that only that portion of the 

primary beam that is on a plane 6.08° away from the graphite crystal (0002) plane 

would be reflected, one would expect that the reflection will take the shape of the 

intersection of two planes, i.e., a bright vertical line should be seen on the fluorescent 

screen. Fine tune both the crystal and the slit holder to make this line as sharp as 

possible and let the brightest part of it fall on the mark of the fluorescent screen. Lock 

the 0 position with the crystal holder clamping screw and note the 20 monochromator 

position. These angles must not be changed. Close the shutter. Carefully take off the 

fluorescent screen. 
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ALIGNMENT OF THE DIFFRACTOMETER WITH 
THE MONOCHROMATED BEAM 

1. Determine a crude straight line passing through the center of the slit holder 

opening and the center of the diffractometer; 

Take away the incident and receiving collimators as well as the beam detector 

from their stands. 

Position the diffractometer such that the center of the four circles, the axis of the 

incident and receiving collimators and the center of the opening of the beam detector are 

approximately coincident with the monochromated beam, and such that if the incident 

collimator were mounted on its stand and slid into the slit holder, it would depress the 

microswitch and do so without changing the slit holder angle 20. 

Position a long focal length telescope I, with its internal cross hairs having been 

very well focused, approximately onto the monochromated (secondary) beam. This 

can be done by proceeding as follows: 

On viewing from the detector end, adjust the position of the diffractometer as 

well as the position of the telescope such that when focussed individually, the tip of the 

needle, and the center of the circle of the slit holder opening falls at the intersection point 

of the hairs of the telescope, respectively. 

2. Find the path of the secondary X-ray beam and make it pass through the 
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center of the diffractometer: 

Replace the goniometer head with the alignment jig. Use the telescope to make 

sure that the pin hole of the jig resides at the same point as the tip of the pin on the 

goniometer head did. Set Chi = 90° and Phi = 90°. Unlock the Phi shaft and turn the 

flat side of the pin hole up. Put a level on the flat side, lock the shaft and fîne tune the 

Phi angle with the two screws adjacent to the clamping screw of the Phi shaft such that 

the flat side is levelled according to the air bubble of the level. Set the Phi angle at either 

0° or 180° using program SETTER such that the fluorescent material pasted around 

the pin hole of the jig faces the incident beam. 

Set up telescope II on the monochromator side and focus on the pin hole of the 

alignment jig. 

Turn off the light in the lab. Open the shutter. The secondary X-ray beam 

should come out from the monochromator and cast a vertical bright line on the 

fluorescent material of the alignment jig. Viewing through telescope II, the pin hole of 

the jig should coincide with the maximum intensity of this line. If not, carefully tap the 

legs of the diffractometer to move the pin hole to make it so. 

3. Make the axis of telescope I coincident with the secondary X-ray beam 

path: 

Turn on the light in the lab. Close the shutter. Carefully tear off the scotch 
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tape used to keep the microswitch depressed. Remove the radiation protection cover 

from the top of the monochromator drum. 

Illuminate the inside of the opened monochromator drum with a strong lamp. 

Turn Phi to +90° or - 90° so that the flat part of the jig will not completely block the 

opening of the slit holder. View through telescope I and, by focusing on the inside of 

the monochromator drum, one should see the image of the tunnel of the primary beam 

path being reflected by the mirror-like graphite crystal as a dark round spot on the 

background of the shiny copper metal. If the graphite crystal is perfectly vertical and so 

is the shaft of Omega (or that of Phi when Chi = 0°), the path of the secondary 

X-ray beam should be coincident with the straight line defined by the center of this dark 

spot and the center of the pin hole of the alignment jig. 

Focus on the center of the dark spot, and move the telescope so as to make the 

intersection point of the hairs coincide with the center of the dark spot. 

Turn the Phi angle such that the flat part of the alignment jig faces telescope I. 

Focus back to the pin hole to see if the intersection point of the hairs falls on the center of 

the pin hole. 

More often than not, one has to adjust the height, the position and the 

orientation of telescope I so that when one focuses back and forth on the pin hole and 

the dark spot, the intersection point of the hairs of telescope I always falls on their 

centers. What one actually needs to do is to scan the vector which originates from the 
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center of the dark spot and points to the intersection point of the hairs, to make it go 

through the pin hole. That is to say, in each movement, one has to imagine the axis of 

the telescope pointing to the center of the dark spot, even if it is not focussed there. 

In making adjustments, one must realize that the image of either the pin hole or the dark 

spot one sees in the telescope may be reversed, depending on the telescope used. If this 

is the case, each movement should go in the opposite direction. For example, if one 

sees that the pin hole is in the upper left quadrant formed by the cross hairs, imaging 

that the axis of the telescope always points to the center of the dark spot, one first moves 

the telescope laterally to the right hand side to make the center of the pin hole fall at the 

vertical hair, then lowers the height to make it fall at the intersection point. 

After achieving the above, one may find that the wall of the pin hole is not lined 

up with the axis. When this occurs, one has to repeat the above two steps after making 

a small adjustment in the Phi angle to achieve a perfect coincidence of the axis of the 

telescope with the path way of the secondary beam, 

4. Positioning the incident collimator; 

This is done by putting the axis of the incident collimator onto the straight line 

defined above. 

Adjust the y-slide and z-slide of the incident collimator stand such that when 

you move the collimator housing along the x - slide to let it sit into the slit holder and 
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push against the microswitch, it will not hit the wall of the slit holder to change the 26 

angle position of the holder. 

After the incident collimator has been inserted into the slit holder and all slides 

are locked, turn Phi to 90° and turn the set screws on the incident collimator housing 

for the outlet hole (close to the alignment jig) until the light reflected from the inside of 

the monochromator drum can be seen. Then fine turn the inlet and outlet holes of the 

collimator such that when focused on either hole, the intersection point of the hairs is 

coincident with the center of the holes. 

5. Positioning the receiving collimator: 

This is done by a similar procedure to that of the incident collimator as described 

above. One has to turn the set screws on the inlet end or shim the outlet end to make the 

center of the two circular holes fall at the intersection point of the hairs when these two 

holes are focused with telescope I. 
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CONFIRMATION OF THE ALIGNMENT 

Focus on: 

(a) the image of the primary X-ray beam tunnel; 

(b) the inlet circle of the incident collimator; 

(c) the outlet circle of the incident collimator; 

(d) the pin hole of the alignment jig facing telescope I; 

(e) the inlet circle of the receiving collimator; and 

(f) the outlet opening of the receiving collimator [ darker and bigger then (e) ], 

respectively, with telescope I; the center of each of them should fall on the intersection 

point of the hairs. One should also be able to see the light reflected from inside the 

monochromator drum even when the pin hole of the alignment jig faces telescope I. By 

using a small piece of white paper and moving it in and out of the front of the tunnel 

inside the illuminated monochromator drum, one can also verify through the pin hole 

that the light is blinking. 
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TESTING THE ALIGNMENT WITH THE X-RAY BEAM 

Mount the detector, and shield its receiving opening with thin metal sheets such 

that the direct beam is attenuated in order to prevent the detector from being damaged or 

being overexposed. 

Turn off the light in the lab. Open the shutter. On looking through telescope 

II, one should see that a round, bright spot, caused by collimation of the secondary 

X-ray beam by the incident collimator, is being emitted by the fluorescent material of 

the alignment jig around the pin hole. If the round spot is not centered on the pin hole, 

fine tune the set screws on the outlet end of the incident collimator. 

By placing a commercial square fluorescent screen between the alignment jig and 

the receiving collimator, one can detect the beam as a smaller bright round spot after it 

has passed through the pin hole. 

With the aid of a small piece of fluorescent screen glued on the inlet end of the 

receiving collimator, and having a hole pierced it through the inlet hole, one can easily 

trace the beam path into the hole. If any deviation occurs, one can turn off the power to 

the diffractometer motors and manually turn the detector arm to cast the beam into the 

hole. In addition to viewing this by eye, one can use the rate meter on the panel for the 

optimal 2 - Theta zero position by noting where the maximum reading occurs on the 

rate meter when turning the 2 - Theta arm. 
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Finally, one opens and closes in turn the upper - lower and left - right half slits 

on the outlet end of the receiving collimator and watches the reading on the rate meter to 

make sure the half opening of the outlet circle cuts half of the radiation. Should any 

deviation occur, one needs to fine tune the position of outlet end of the receiving 

collimator to correct it. 

Once this is done, this phase of the alignment procedure is completed. The 

program DOIT should be run with a reflection near CHI = 90° to obtain instrument 

zeroes and determine whether any additional fine adjustments need be made. 
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GENERAL SUMMARY 

This dissertation is divided into three sections. 

In Section I, the grain size determinations of powder materials by various 

methods were discussed and compared; these included the convolution methods used in 

the Rietveld refinement, the "direct" investigation by the transmission electron 

microscope, and a computer program for Fourier deconvolution developed by the 

author of this dissertation. Emphasis was on the treatment of noise and discontinuities 

associated with the patterns of the standard sample and the sample of interest; this was 

shown to be a key factor regarding the successfulness of the backward Fourier 

transformation in obtaining the deconvoluted peak associated with the grain size effect. 

After cubic-spline-smoothing the raw data patterns, and truncating the Fourier 

transformed patterns at the right points, the deconvolution method gave results for grain 

size which were found to be in excellent agreement with those from the transmission 

electron microscope investigation. It seems that the Fourier deconvolution method is 

indeed a "most powerful technique"^^^ in dealing with the analysis of grain size (and also 

of stress, if it exists in the sample), including the revelation of the characteristics of the 

peaks responsible for the grain size and stress respectively, since this method does not 

assume any particular peak shape function in determination of the peak broadening 

which is used in the Scherrer's equation for the grain size calculation. 
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In Section II, X-ray investigation of metal complexes containing a nominal 

benzo-ligand, namely, I: benzo-[2,3]-4-methyl-thiophene, CgH^Q8-Ir-[Cg(CHg)g], 

and II: dibenzothiophene, C^)QS-Ir-[Cg(CHg)g] were described. The results 

indicated the two carbon atoms in the benzo-group two carbon atoms which are not 

coordinating with the Ir atom now had an sp^ character in this coordinated ligand; 

molecular mechanics also confirmed this result. Molecular mechanics modeling can be a 

promising supplement to X-ray diffraction structure determination. 

Section III presents an optical alignment procedure using ordinary optical 

telescopes, instead of directly using hazardous X rays, to align a recently reassembled 

Hilger-Watts four-cycle diffractometer on a Rigaku rotating anode X-ray generator. 

This procedure provides efficient, safe and accurate alignment, especially when the 

instrument is completely out of alignment. 
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